
NAVAL POSTGRADUATE SCHOOL
Monterey, California

ADA257 606

'AD SO Its

DTI2
THESIS

CD Turtle Graphics Implementation Using a

Graphical Dataflow Programming Approach

mom

_ : by

Robert S. Lovejoy
September 1992

Thesis Advisor: C. Thomas Wu

Co-Advisor: David A. Erickson

Approved for public release; distribution is unlimited.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb. RESTRICTIVE MARKINGS

20, SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Computer Science Dept. (ifaplicable) Naval Postgraduate School
Naval Postgraduate School 37
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

Sa. NAME OF FUNDING/SPONSORING ab. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

TURTLE GRAPHICS IMPLEMENTATION USING A GRAPHICAL DATAFLOW PROGRAMMING APPROACH

12. PERSONAL AUTHOR(S)

Lovejoy, Robert Steven
• TYP EPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

ters esis FROM _ TO: 1992, September 194

16. SUPPLEMENTARY NOTATION The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by blocknumber)

FIELD GROUP SUB-GROUP OBJECT ORIENTED PROGRAMMING, TURTLE GRAPHICS,
VISUAL DATAFLOW PROGRAMMING

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This thesis expands the concepts of object-oriented programming to implement a visual dataflow programming
language. The main thrust of this research is to develop a functional prototype language, based upon the Turtle Graph-
ics tool provided by LOGO programming language, for children to develop both their problem solving skills, as well
as their general programming skills.

The language developed for this thesis was implemented in the object-oriented, dataflow programming language
Prograph. The dataflow paradigm was emulated in order to provide a more intuitive, easy to learn programming en-
vironment for children to use. Additionally, Prograph was chosen because it provides the necessary base classes to
easily implement an interactive user interface, and it provides the necessary primitive operations for all graphics
drawing routines.

This thesis demonstrates a prototype for a potential visual programming language that can be used at all levels of
education to teach problem solving, higher-order thinking skills, mathematical concepts, and the fundamentals of
computer science.
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

[]UNCLASSIFIED/UNLIMITED Q' SAME AS RPT. [] DTIC USERS UNCLASSIFIED

e OF *USPWONSLNDVDUAL .22b TELEPHONE7(/nc/ude Ara Code) I 2 SYMBOL
T5 omas Wu ~K omputer Science Dept, NPS (408) 646-2174

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete UNCLASSIFIED
i

Approved for public release; distribution is unlimited

Turtle Graphics Implementation Using a
Graphical Dataflow Programming Approach

by
Robert Steven Lovejoy

Lieutenant, United States Navy
B.S., Bradley University, 1983

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September, 1992

Author: ____ ____ ___ -____ ----- __"

Robert Steven Lovejoy 7

Approved By:
C. Thomtas Wi,>IAhesis Advisor

David A. Erickson, Co-Advisor

Rober(B. McGhe., Chairman,
S---Department of Computer Science

ii

ABSTRACT

This thesis expands the concepts of object-oriented programming to implement

a visual dataflow programming language. The main thrust of this research is to

develop a functional prototype language, based upon the Turtle Graphics tool

provided by LOGO programming language, for children to develop both their

problem solving skills as well as their general programming skills.

The language developed for this thesis was implemented in the object-oriented,

dataflow programming language Prograph. The dataflow paradigm was emulated in

order to provide a more intuitive, easy to learn programming environment for

children to use. Additionally, Prograph was chosen because it provides the

necessary base classes to easily implement an interactive user interface and it

provides the necessary primitive operations for all graphics drawing routines

This thesis demonstrates a prototype for a potential visual programming

language that can be used at all levels of education to teach problem solving, higher-

order thinking skills, mathematical concepts, and the fundamentals of computer

science.

Accession For
NTIS G!•eA IJ

DTTC TAB [

but Ion/

- -

Table Of Contents

I. INTRODUCTION 1

II. SURVEY OF THE LITERATURE 3

A. OBJECT-ORIENTED PROGRAMMING .. 3

1. Classes/Objects and Related Variables and Methods 4

2. Inheritance .. 5

3. Encapsulation .. 7

4. Polymorphism .. 8

B. TURTLE GRAPHICS PROGRAMMING LANGUAGE 9

1. Turtle Graphics Origin 9

2. Overall Educational Benefit .. 10

a. Case Studies .. 10

b. Problem Solving Skills ... 11

c. Specific Curriculum Benefits .. 12

3. The Language ... 13

a. Turtle Space ... 13

b. Making Shapes .. 14

c. Making Procedures ... 14

d. Generalizing Procedures ... 15

C. PROGRAPH: A Visual Dataflow Program Style 16

1. Visual Systems-Iconic Based ... 17

a. C lasses ... 17

b. Attributes .. 18

c. Methods .. 19

2. Visual Systems-Dataflow Based .. 20

a. Message Passing/Invoking a Method .. 22

b. Control Structures ... 23

IlI. DATAFLOW TURTLE GRAPHICS .. 28

A. LANGUAGE EVOLUTION .. 28

B. WHY VISUAL PROGRAMMING .. 29

iv

1. Dual Brain Theory ... 29

2. A Need For a New Programming Style .. 30

C. WHY DATAFLOW PROGRAMMING .. 30

1. Executable versus Non-Executable Diagrams 31

2. Dataflow Functionality .. 31

D. ICONIC LANGUAGES ... 32

1. Iconic Guidelines .. 32

E. TURTLE GRAPHICS DESIGN AND IMPLEMENTATION 33

1. Developing Turtle Class/Objects and Methods 34

a. Class Hierarchy ... 34

b. Turtle/pTurtle Class Definitions ... 35

c. User Interface Design and Implementation: First Phase 36

2. Integration of Turtle Code and Dataflow Programming Code 39

a. Class Hierarchy ... 39

b. DFObject and Descendents 40

c. User Interface Design and Implementation: Second Phase 41

d. Program Objects: Icon-Description and Functionality 44

IV. PROBLEM SOLVING WITH DATAFLOW TURTLE GRAPHICS 48

A. GENERAL DISCUSSION .. 48

B. PROBLEM STATEMENT .. 48

C. DEVELOPING A SOLUTION ... 48

1. DFTG's Object-Oriented Approach to Problem Solving 48

2. "Man-Project" Problem Reduction ... 49

a. Create Turtles .. 49

b. Creating the Head ... 49

c. Create a Face .. 50

d. Create a body ... 50

e. Create a bowtie .. 51

f. C reate legs ... 53

V

g. Create arm s ... 54

h. Final Code Encapsulation .. 54

V. SUMMARY, CONCLUSIONS, & SUGGESTIONS FOR FUTURE

RESEARCH 58

A . SUM M ARY .. 58

B. CONCLUSIONS ... 59

C. SUGGESTIONS FOR FUTURE RESEARCH 59

1. Completion of "user-defined Turtle command" functionality 60

2. Completion of "user-help" functionality ... 60

3. Expand language control constructs ... 60

4. Fully implement Error detection/correction capabilities 60

5. Incorporate a programming pallet of available commands 61

6. Implement additional Turtle functionality ... 61

7. Perform statistical studies of user effectiveness 61

APPENDIX A - USER COMMAND/METHOD DEFINITIONS 62

APPENDIX B - NEW TURTLE GRAPHICS - SOURCE CODE 66

LIST OF REFERENCES 180

BIBLIOGRAPHY .. 182
INITIAL DISTRIBUTION LIST ... 183

List of Figures

Figure 2.1 Superclass/Subclass Inheritance Hierarchy 6

Figure 2.2 Ship Example .. 7

Figure 2.3 Turtle Graphics commands for Square-process 14

Figure 2.4 Graphical Class Hierarchy .. 18

Figure 2.5 Application Attributes/Methods Windows 19

Figure 2.6 Case Window for Window/Close .. 21

Figure 2.7 Method Calling Formats .. 22

Figure 2.8 Case on Fail Control Structure .. 25

Figure 2.9 Case Success Control Structure .. 26

Figure 2.10 Synchro Control Structure .. 26

Figure 3.1 Class Hierarchy ... 34

Figure 3.2 Turtle Class Definition ... 35

Figure 3.3 pTurtle Class Definition ... 36

Figure 3.4 Graphics Display Window .. 37

Figure 3.5 Turtles Menu Option .. 38

Figure 3.6 Turtle Attribute Inteiface Window .. 39

Figure 3.7 Dataflow Turtle Graphics Class Hierarchy 40

Figure 3.8 Dataflow Programming Window .. 42

Figure 3.9 Revised Turtle Display Window .. 43

Figure 3.10 Turtle Graphics Help Window ... 44

Figure 3.11 Programming Object Icons .. 45

Figure 3.12 Stored Program Code for Star ... 46

Figure 3.13 User-Defined Operator Code ... 47

vii

Figure 4.1 Head Solution .. 50

Figure 4.2 Face Solution .. 51

Figure 4.3 Head/Face Integration ... 52

Figure 4.4 Body Solution ... 52

Figure 4.5 Bowtie Solution ... 53

Figure 4.6 Integrated Body/Bowtie Solution ... 53

Figure 4.7 Head/Body Integrated Solution ... 54

Figure 4.8 Legs Solution ... 55

Figure 4.9 Head/Body/Legs Integration ... 55

Figure 4.10 Arm s Solution ... 56

Figure 4.11 Complete Integration .. 56

Figure 4.12 Final M an Encapsulation .. 57

viii

ACKNOWLEDGEMENTS

This thesis was made possible through the efforts of several people. First and

foremost, thanks to my advisors Dr. Wu and Dr. Erickson. Had it not been for their

challenging questions and patient guidance, the completion of this research would

have not been possible.

Special thanks goes to John Daley, LCDR, USN, a military instructor at Naval

Postgraduate School. Much valuable research information was gained with his

guidance to related Turtle Graphics material.

Lastly, for the most important people in my life, my family, without whom I

certainly would not be where I am today. Thanks for all the encouragement, love,

and support, especially from my wife Vikki. I only wish that I had been able to spend

more time with you and the kids. And finally a special thank you to my children,

Michael, Brittany, and Andrew for making me smile even when my mind was pre-

occupied.

ix

I. INTRODUCTION

The purpose of this thesis is to expand upon the graphics portion of LOGO1

programming language. Much research has been conducted in the area of Turtle

Graphics languages, however, they are text-based implementations requiring a

relatively high degree of sophistication with text and language constructs [CIL86].

The intent of this research is to design and implement LOGO's turtle metaphor into

a Turtle Graphics Dataflow Programming Language. The major areas of concern in

this thesis are Object-Oriented Program Design, Turtle Graphics Programming

Language, and Visual Dataflow Programming.

Dataflow Turtle Graphics (DFTG) has been developed as a language for

children to develop their problem solving skills as well as basic programming

concepts. It is a tool to teach the process of learning and thinking. DFTG is a visual

programming language which supports the execution of dataflow programs. It was

implemented with an object oriented design using Prograph2 [TGS88a, TGS88b,

TGS91], an object-oriented programming language (OOPL) available on the Apple

Macintosh 3. This language was chosen because it provided the necessary base

classes for interface design, as well as the primitive operations for all graphics

drawing functions. Prograph also handles list processing and manipulation of non-

conventional objects (i.e., pictures, sounds, etc.) very easily, which is important to

the languages' continued expansion.

The main thrust of this thesis was to implement a prototype language, DFTG,

by combining the concepts of Turtle Graphics Programming with Visual Dataflow

1. Armedeus is a visual, object-oriented database, thesis developed by several students under advise-
ment by C. Thomas Wu, Prof., Computer Science Department, Naval Postgraduate School,
Monterey, Ca.

2. Prograph is a trademark of The Gunakara Sun Systems, Ltd.

3. Apple and Macintosh are registered trademarks of Apple Computers, Inc.

Programming. The essential theme is to remove the short comings of text-based

programming, and to provide a more intuitive, easy-to-learn environment for

dataflow programming.

The remainder of this thesis is organized as follows. Chapter II is a survey of

the literature that forms the background for this research. It lays the groundwork for

future discussion in this thesis, and provides an overview of the main topics of this

thesis: Dataflow Programming, Turtle Graphics, and Object-Oriented Program

Design. Chapter III presents a detailed description of the design and implementation

of Dataflow Turtle Graphics. Chapter IV provides a step-by-step dataflow turtle

graphics solution for a particular programming project. Chapter V provides a

summary, conclusions, and suggestions for future research. Appendix A provides

the definitions for all predefined user commands. Appendix B provides the source

code for the implementation of this thesis.

2

II. SURVEY OF THE LITERATURE

This chapter deals with three major topics: Object-Oriented Programming

(OOP), Visual Dataflow Progiamming Languages, and Turtle Graphics

Programming Language. Basic terminology and concepts are discussed in this

chapter. Prior knowledge of these areas is not required for understanding the intent

of the research. This chapter is intended to serve as an introduction to these three

topics, laying the groundwork for the rest of this thesis.

A. OBJECT-ORIENTED PROGRAMMING

Object-oriented programming is a relatively new area of programming whose

origin has been attributed to the programming languages Simula and Smalltalk

[Booc9l]. Although OOP seems to be on the rise in programming and program de-

sign today, there is clearly no single standard to abide by in order to be labeled an

object oriented language. Clearly, the motivation for all such languages is to provide

faster development, reliable and quality products, and easier maintenance and exten-

sion.

Object oriented programming languages provide four main features to achieve

their programming goals: abstraction, encapsulation, inheritance, and polymor-

phism. Abstraction supports code reusability, shareability, and allows for integra-

tion. Encapsulation supports code reliability, extensibility, and also allows for inte-

gration. Inheritance supports code reusability, shareability, and extensibility. Lastly,

polymorphism supports code extensibility, and shareability.

Creating complex applications using an object-oriented programming language

(OOPL) can be simpler than designing the same program using a more conventional

procedural language. This is because 00 design more closely mirrors the real world

entities being modeled. Additionally, the full benefit of OOP can only be realized if

3

encapsulation is maximized during the design process. As program ccmplexity in-

creases, so to does the benefits of an object-oriented design. The most effective tool

for dealing with this complexity is abstraction. The most common form of abstrac-

tion by which complexity is managed is encapsulation.

The following are generally considered to be the fundamental characteristics of

all object-oriented programming languages: class/object and associated variables

and methods, inheritance, and polymorphism. The very basics of each of these con-

cepts follows:

1. Classes/Objects and Related Variables and Methods

A class simply defines a mold or template from which all objects or

instances are cast. It specifies a particular set of characteristics used for defining

objects of that class or, more formally, "a set of objects that share a common

structure and a common behavior" [Booc9l; page 93]. Once a class is defined it does

not change. In object-oriented programming an object is an abstraction of a real-

world entity. They are specific instances of a class having their own set of self-

contained variables and behaviors by the use of methods. Each instance of a class

can have a unique set of values assigned to its variables or attributes, which may or

may not change throughout the execution of the program. Objects are intended to

encapsulate both data and behavior.

Consider the following example of class/object. Declare Ship as the class

or template of the objects desired. The class description serves as an abstract

description of related objects and how they interact with each other and the outside

world. As stated, it is helpful to think of a class as the general description of a real-

world entity. This particular class will describe some of the common characteristics

of all ships in general. A specific Ship, such as USS JARRETT, is an object

(instance) of this class. All objects of class Ship share the same structure and

4

behavioral aspects. It is this basic structure and behavior aspects that defines the

class. All instances of the class Ship will have its own set of instance variables. Each

individual ship will have values for these instance variables specific to that ship.

Furthermore, instance variables share only their name with other instances of that

class. Their values are independent of each other. Class variables, on the other hand,

remain identical for all instances of that class, in name and value.

A Method is a procedure or function associated to the instance of a class

that defines their behavior. Methods are invoked by passing messages to objects. The

object will respond appropriately if there exists a method, of the same name, within

its own set of methods. This set of methods defines the objects behaviors. Methods

are generally the only means for other objects to access the variables of a specific

instance. Methods are also broken into at least two groups, instance or object and

class methods. In Ship class, create-ship is an example of a class method to be used

when adding a new ship is required. An instance method may be get.ship jype, and

would be directed at a specific instance of a class.

2. Inheritance

Inheritance is a relationship among classes, wherein one class shares the

structure or behavior defined in one (single inheritance) or more (multiple

inheritance) other classes. Inheritance defines a "kind of' hierarchy among classes

in which a subclass inherits from one or more superclasses; a subclass typically

augments or redefines the existing structure and behavior of its superclasses

[Booc91]. Traditional procedural languages, such as Ada, do not support this object-

oriented feature. Inheritance is a means for programmers to construct reusable

objects so they can produce programs in a relatively short time through code

sharing. New classes can be easily defined based on existing classes. The new class

is referred to as a subclass of the existing superclass. Figure 2.1 represents a general

5

class hierarchy. Classes Y and Z represent subclasses of Class X with arrows

indicating the direction of inheritance. Class X may also be referred to as the

superclass of classes Y and Z. Y and Z inherits all of the attributes and methods of

Class X. Additionally, subclasses may add more variables and methods as required

to define that class. Subclass method names may or amy not be unique. The effect

of using the same method name for a subclass will simply overshadow or change the

behavior of messages sent to instances of this class. All messages received by an

object will first check the methods of that class for a match and will proceed up the

inheritance chain until a match is found.

Figure 2.1 Superclass/Subclass Inheritance Hierarchy

There are two types of inheritance, single inheritance and multiple

inheritance. Single inheritance is defined as a class that can have only one

superclass. Multiple inheritance is defined as a class which inherits form more than

one superclasses. The specific considerations of single vs. multiple inheritance will

not be discussed in this research.

Figure 2.2 shows how a typical class hierarchy might appear for our Ship

class. Ship would be considered the superclass of Supply, Combatant, Auxiliary,

ect. Ship might have the attributes name, hull, homeport, draft, ect. Each of these

attributes are common in all ship types and should be defined in the class template.

6

The subclasses would each inherit all of the superclass attributes and methods, but

would likely require some augmenting to satisfy specific needs of each type of ship.

SAuributesm, b-'

Ship
Metlxxds:w

Attributes:c Auributes:d Attributmes
Combatant[Supply [Auxiliary]

Metbodsm Meto:w Mebd J

Figure 2.2 Ship Example

In the Ship example, objects of all subclasses would inherit attributes a and

b from Ship class, as well as the behavior to respond to method w. Each subclass has

also augmented its' attribute list with its' own specific attributes. Additionally,

subclass Supply has overshadowed the superclass method, w, thereby changing the

response behavior if it should receive a message w.

3. Encapsulation

Encapsulation is a means of storing an objects attributes and methods in a

kind of black box. It can be defined as "the process of hiding all of the details of an

object that do not contribute to its essential characteristics" [Booc91; page 46]. It is

commonly referred to as information hiding, and is the most effective means of

managing the complexity of a program. Programming in an object-oriented

language, however, does not ensure that the complexity of an application will be

well encapsulated. Applying good programming techniques can improve

encapsulation, however the full benefit of object-oriented programming can only be

7

realized if encapsulation is a main goal during the design process. In OOP, a

properly encapsulated program will provide a more extendable, easily modifiable,

and integratable application. The black box approach ensures that the user does not

need to know the internal details about how a specific method works, or what

attributes the object has. The user needs only to be aware of the name of the message

to be passed, and what will be returned by the object.

Encapsulation provides the means by which a developer can have several

teams working on different object specifications, to be tested separately for

correctness, and then integrated together for the final product. The modularity

concept of producing code was essential for developing the final Dataflow Turtle

Graphics Language. It also allows for the code to be improved/modified without

affecting how end users access the object.

4. Polymorphism

Polymorphism along with inheritance form the very basis of object-

oriented philosophy. Polymorphism is a phenomenon that occurs when the same

message is sent to different objects. Each object responds with a method appropriate

to its class.

Polymorphism allows programmers to add methods with the same name to

classes that share some commonality and therefore use the same name to denote the

specific function. Consider a graphics application in which a window is to drawn

with various different objects. Appropriate responses would result with the same

Draw message being sent to each object individually.

Polymorphism, used correctly, does away with elaborate control structures

to handle all possible scenarios. Without polymorphism, the Draw method example

would have to modified each time a new kind of object was added. With

polymorphism, however, no changes are required to be made to the existing code.

8

Thus, polymorphism, facilitates code extensibility and modifiability in less time and

with less errors.

B. TURTLE GRAPHICS PROGRAMMING LANGUAGE

Turtle Graphics can be thought of as a programming language for learning. It is

a language that encourages students to explore, learn, and think. It provides all the

tools required to create programs of varying degree of difficulty. Through

immediate, visual, and non-judgmental feedback, the student feels in complete

control of the graphics program, and thus is motivated to continue on the problem-

solving journey. In a creative and helpful environment, Turtle Graphics turns

mistakes into opportunities for exploration and new creation. In all, Turtle Graphics

helps students with personal development, attitudes toward learning, depth of

understanding, and other long-term benefits.

1. Turtle Graphics Origin

Professor Seymour Papert first introduced Turtle Graphics with the

development of the programming language LOGO at MIT in 1967. The initial intent

was to develope a computer language that would be both suitable for children, yet

powerful enough for the professional programmer. The name LOGO was chosen to

suggest the fact that it is primarily symbolic and only secondary quantitative

[Pape8O,pg2lO]. The Turtle is an example of a constructed computational "object-

to-think-with." The principal role of the Turtle is to serve as a model for other

objects, yet to be invented. The Turtle is simply a computer-controlled cybernetic

animal. It exists within the cognitive LOGO environment, LOGO being the

computer language in which communication with the Turtle takes place. The Turtle

serves no other purpose than of being good to program and good to think with. It is

generally assumed that the more powerful a programming language is, the harder it

is to learn. LOGO is based on the concept of easier learning, by relating a turtle to

9

an object used to think with. Turtle Graphics provides a straightforward meaning to

attach to each individual procedure, namely, a picture. The basic foundation for

Turtle Graphics lies with the idea that specific problems of interest to the novice can

be tackled by simple programs.

2. Overall Educational Benefit

LOGO involves more than just manipulating a turtle object or using

mathematics. Its essence involves thinking about processes and about how you are

doing what you are doing. In some cases of educational development, the process of

creating a product is more important than the final product. Indeed, it may be more

interesting to look at how a design was created than to look at the design itself.

a. Case Studies

Much research has been conducted on the relative benefits of learning

LOGO through Turtle Graphics. Although there are some studies with mixed or

inconclusive results, one conclusion is clear: The teacher is critical to the students'

success. Some of LOGO's supporting case studies follow:

In one study, 45 third grade students were split into one of three groups,

of which two used LOGO and the third used an array of other "problem solving"

software. One LOGO group used problem solving strategies to solve graphics

problems, while the other used LOGO to solve geometry problems, The same

teachers using the same instructional methods, rotated through the groups. The

results showed no difference in the groups' general problem solving ability.

However, those in the LOGO groups "planned more effectively" and "represented

the planning task differently" from the non-LOGO group. In both LOGO groups,

there was an increased understanding of geometry [LGL88].

In another study of four seventh grade mathematics classes, two classes

substituted one period per week of LOGO activities for traditional geometry

10

instruction. In pre-tests. the non-LOGO classes scored higher. However, at years

end, on a 60-item test on applications of angle estimation, the LOGO classes

improved 22% versus the non-LOGO classes' 13%. Significant differences between

the two groups were found in all six areas of the post-test[Fraz87].

This study investigated the learning of fractions in the fourth grade, and

how LOGO affects the students' understanding. All the fourth graders received the

same instruction on fractions. The control groups learned to program in LOGO, but

with no attempt to relate LOGO to their study of fractions. The test group was asked

to design software about fractions that they could present to third graders. At the end

of the study, the test group performed better than the control groups in knowledge

about fractions (as measured by standardized test) and in LOGO programming

ability. They also persevered in solving problems [Hare88].

This final study involved 48 children in grades 1 and 3, who were

randomly assigned to 28 sessions of either LOGO or drill and practice work. They

worked in pairs and were observed in terms of social interaction and problem

solving activity. When significant differences were found between the groups, they

favored the LOGO group. These differences occurred in three of seven categories of

social behavior defined for the study: resolution of conflict, self-direction and rule

determination. This study supports the use of LOGO as a means of encouraging

desirable social interactions that are likely to lead to subsequent problem solving

behaviors [CN88].

b. Problem Solving Skills

If children learn nothing else, in their early years of development, they

must learn some sort of general problem solving skills. For any project, their must

be an identifiable and attainable goal to reach. Given an idea for a project, consider

the following problem solving scenario.

11

Initially spend some time just thinking about how to approach the

problem, then experiment with some ideas. It is then necessary to break the problem

into small, manageable chunks, and solve the individual little problems. If one way

doesn't work, then think of another. The ability of learning to look at a problem from

different approaches is the result of continuing to try new ideas and observing their

results. Once a better way of doing something is observed, the idea is modified and

tested. This becomes a cyclic approach until each little chunk is acceptable. The

smaller programs are then combined into the larger solution. This forms the basis of

a solution that is clear, precise, and with no ambiguity. The entire solution becomes

a sequential organization of fluid ideas that remain easy to understand and return to.

As researchers try to assess LOGO's ability to improve problem

solving, they face the same difficulties as they have for years: problem solving in

any environment is extremely difficult to evaluate [YM90].

c. Specific Curriculum Benefits

LOGO's Turtle Graphics provides the necessary structured

programming environment, that enhances one's ability to creatively learn. The

underlying nature of Turtle Graphics can be beneficial to multiple curriculums of

education.

(1) Mathematics: This area is probably seen as most influenced by

Turtle Graphics. Estimation is introduced by working with distances and angles.

Polygons use REPEAT to create regular shapes. Number relationships are

investigated using perimeter and area. Symmetry is necessary when drawing points

and lines. Learning a coordinate system is required for plotting points and graphing

lines. Geometry is reinforced through drawing and measuring lines and angles.

(2) Programming: Proper techniques form the basis for writing

structured programs. Program design is accomplished through breaking down a

12

problem into smaller tasks. Flow of control is accomplished with branching and

conditionals. Variables and recursion exemplify the power of the language.

(3) Social Studies: A sense of direction is accomplished through

translation of the turtle's heading into compass points. Cartography can be

introduced by making maps with Turtle Graphics. The concept of learning a foreign

language is apparent, as a result of creating and using foreign language primitive and

procedure names.

3. The Language

Although LOGO language is a completely, full-featured programming

language, it is only necessary to concentrate on the Turtle Graphics portion for the

extent of this research. The intent of this section is not to teach how to program in

LOGO, with the use of Turtle Graphics, but simply to provide an introduction to the

Turtle Graphics concepts and programming environment.

a. Turtle Space

Turtle space is defined by the dimensions of the screen on which the

graphics is to be displayed. Screen dimensions are generally stated in vertical (the

y-axis direction) and horizontal (the x-axis direction) measurements. It is imperative

to pinpoint the origin of the screen where x,y --0.

The turtle can be moved about the screen using cartesian x-y

coordinates or turtle coordinates. Cartesian commands send the turtle to a specific

x-y position or. the screen, without regard to the turtles current position.

In the turtle reference, all commands refer to the turtle's current

position, not its final position. The turtle is moved forward, backward, turned left or

right in relation to where it is now.

13

In the cartesian system, the destination is the important thing; in the

turtle reference system, it's the trip [Clay88].

b. Making Shapes

Turtle Graphics provides the necessary tool to draw graphics using

turtle reference commands. Consider using a turtle draw a square. The following

steps would be required, using the turtle metaphor to think through the process, to

complete the task.

1. "OK turtle, go forward 50 steps and turn right by 90 degrees. That
completes the left side of the box."

2. "Now, go forward another 50 steps and turn right by 90 degrees. That
completes the top of the box."

3. "Go forward yet another 50 steps and turn right, again by 90 degrees.
That completes the right side of the box."

4. "Go forward another 50 steps and turn right 90 degrees. That completes
the bottom edge of the box."

That completes the process to make a square. Figure 2.3 shows the

results of the turtle task, as well as two equivalent LOGO command translations.

The Repeat command shows the power of iteration in LOGO.

Turtle Graphics 2

Reference Commands

1.FD 50 RT90 1
2. FD 50 RT 90 I
3. FD 50 RT 90
4. FD 50 RT 90

-or- 4

REPEAT 4 [FD 50 RT 901

Figure 2.3 Turtle Graphics commands for Square-process

c. Making Procedures

It is sometimes convenient and necessary to be able to define a

particular process for further use. A series of LOGO commands may be grouped

14

together under a single name by writing a LOGO procedure. The name of the

procedure is a shorthand for all commands included in it, a form of encapsulation.

Typing the name of the procedure tells LOGO to automatically execute each line of

procedure in turn, just as if you had typed them, one after another, on the keyboard.

In the Square-process example, it is possible to define a square

procedure, for further reference, in the following manner:

TO SQUARE50
REPEAT 4 [lFD 50 RT 90]

END

LOGO will add SQUARESO to all its other commands. Each time

SQUARE50 is typed, the turtle will draw a square of size 50. The figure will be

drawn at the turtle's current position on the screen.

d. Generalizing Procedures

Generalizing a procedure can add to the power of the command by

giving the user more control and flexibility. Consider the SQUARE50 procedure.

This procedure could be edited each time a square of new dimensions is required, or

many SQUARE-like procedures could be defined, however this is not very efficient.

After all, LOGO itself does not have multiple 'FD' commands for every possible

length of a line drawn.

Arguments must accompany LOGO commands. Arguments provide

the command with the necessary missing information to complete its task. For

example, the line-drawing command, FD, must be accompanied by an integer

argument so that LOGO knows the correct length of the line to be drawn.

Consider the SQUARE50 procedure. The value of the argument will

tell the square procedure how long each side is to be drawn. Changing the value of

15

this argument will result in boxes of different sizes. The new generalized SQUARE

procedure would look as follows:

TO SQUARE
REPEAT 4 [FD:EDGE kT 90]

END

The preceding concepts and examples provide the basic foundation for the

creation of Turtle Graphics as a programming tool used in LOGO. It is precisely

these basic foundations that provide a point of departure for the implementation of

Dataflow Turtle Graphics presented in Chapter IV.

C. PROGRAPH: A Visual Dataflow Program Style

Prograph [TGS88a, TGS88b, TGS91] is stated to be a "very high-level, picto-

rial object-oriented programming environment", which integrates several areas of

computer science. Additionally, Prograph supports an object-oriented application

building toolkit. This section explores Prograph's visual programming environment

including the use of dataflow diagrams for method definitions, and it's use of icons

as programming language constructs. As a complete language, Prograph satisfies a

wide range of different programming requirements.

Prograph has been characterized as a hybrid OOP language, since it supports

primitive language types such as integer, boolean, character, etc. A pure OOP lan-

guage has no primitive language types; everything is an object [Booc9l]. Addition-

ally, Prograph supports a feature which incorporates the use of universal methods,

thus adding to its hybrid likeness. These methods do not belong to any particular

class, but can be called from any method in any class [TGS88b].

The intent of this section is not to teach how to program in Prograph, but only

to provide a basic understanding the Prograph language, and its programming envi-

ronment. Several examples are taken from actual code provided by Prograph lan-

16

guage. Specific features are highlighted and discussed to provide an understanding

of how programs are written in Prograph.

1. Visual Systems-Iconic Based

There is no clear-cut definition as to what is meant by the term "visual

programming", however, in general, it refers to the use of graphical representations

in the process of programming. This programming style is an extreme departure

from traditional programming and is not dependent on linguistic ability or limited

by the user's knowledge of verbal syntax. Visual programming involves nonverbal,

visual information that is recognized and understood in a single, simultaneous

process.

Prograph is a fully visual development environment, as well as a fully

specified icon-based language. In contrast to text-based systems, icon-based

systems use pictures as programming language constructs, that is, executable

graphics. Prograph supports a highly visual prcramming system which has

multiple windows for viewing program execution states, visual syntax editors for

designing program data structures, and graphical ex'ressions in the windows

themselves. Figure 2.4 is a typical example of the visual nature of Prograph. It shows

a graphical representation of the hierarchy of base classes provided by the language.

a. Classes

Figure 2.4 shows the classes window for the base classes provided by

Prograph. All applications start out with these minimum template classes. Each

Prograph class is represented by a hexagonal icon displayed in the Classes window.

All class hierarchies for the program are displayed in the classes window. There can

be multiple class hierarchies, as required by the application. The lines connecting

individual classes within the hierarchy represent the inheritance links between

various classes. Prograph supports an upward inheritance.

17

SClasses

I ste

Application Menu Menu Item Vindow Vindow Item

Figure 2.4 Graphical Class Hierarchy
The class icon itself is divided into a left and right half. The triangle on

the left-half of the icon represents the attributes of the class while the stacked

rectangles on the right-half represents the methods. Double-clicking on the left half

opens the attributes window for the particular class. Similarly, double-clicking the

right half opens the methods window for the class.

New classes are created, and will appear, by clicking inside of the classes

window. The new class is then given a unique name and is defined by adding the

appropriate attributes and methods. Attributes and methods are also created by

clicking in their respective windows.

b. Attributes

Figure 2.5 shows the results of double-clicking on the left and right

halves of the class icon. Class attributes are represented by the hexagon shaped icons

while instance attributes, below the gray line, are represented by inverted triangles.

Inherited attributes have a downward pointing arrow inside of the triangle icon.

Figure 2.5 shows both inherited attributes, and local attributes. Local attributes are

not inherited and do not have the downward pointing arrow. Attributes can be

18

V Application R Application
<<Applicatio... Lý0

urrenNUrrL Notify Mouse Down
NULL

Q Modify this method
front 9 1 to show your

About about dialog.

NULL Menu Click [J
V Front Vindow

owner

FALSE Modify this method

T.J to update your menus.
active? Update Menus

NULL

V
menu bar

Figure 2.5 Application Attributes/Methods Windows

assigned initial values by double-clicking on the icon and changing the value in the

attribute editor. Attributes can also be more than simple data types, they can be

instances of other classes; this is a means of representing a composite object in

Prograph.

c. Methods

Figure 2.5 also shows the Application-Class methods window. As seen.

methods are represented by an icon that contains a small dataflow diagram.

Additionally, their is a special type of method known as an instance generator, not

shown. Its has an icon that is represented by the symbols <<> in a hexagonal shape.

This instance generator metlzd may be invoked whenever an instance of that class

19

is created. This method also overshadows, by redefining inherited attributes or

methods, the instance primitive.

2. Visual Systems-Dataflow Based

Dataflow programming potentially represents a means for efficiently

exploiting the concurrency of computing on a very large scale. A dataflow language

is any language either based entirely on the notion of data flowing from one function

to another or directly supporting such flowing of data. In Prograph, active data flows

through the program, activating each instruction as soon as all of its required input

data have arrived. These instructions can be anything from a simple system-supplied

primitive, to a call to an arbitrarily complex user or system defined method. While

Prograph is inherently concurrent due to its dataflow design, the Macintosh is a

single-processor, and therefore sequential, machine.

Figure 2.6 shows the result of double-clicking on a method icon. The

lettering of the operators was added for clarity of discussion. Additionally, operators

D,E, and F were added to support the review of various Prograph operators. This

case window provides the dataflow programming interface window for defining the

actual behavior of the method. Undefined methods will open with only an input bar

along the top, and output bar along the bottom. Two terms critical to the dataflow

paradigm are terminal and root. Terminals represent the input objects that allow data

to flow into a method, while root represents the output object from which data flows

out of a method. Their icons are small circles attached to the top and bottom of

methods. They are uniquely numbered from left to right.

In the Window/Close method example, there are several types of Prograph

operators. Operator A represents a get-operation, and will result in retrieving the

labeled attribute value from the object flowing into it. Operator B represents a set-

operation, which results in setting the labeled attribute value of the input object on

20

Window/Close 1:1

B. actie? F. ind-

F ALSE

u ~~~D. _....

S FALSE

oI J

Figure 2.6 Case Window for Window/Close

terminal-i to the value of terminal-2. Operator C represents one way of making a

call to another method. The various ways to make method calls will be discussed

later. Operator D represents a persistent operation. Prograph is one of the few

OOPLs that supports persistent objects. Persistents are defined as data or objects that

exists from one execution of a program to another. They are created and displayed

in a Persistents window that is separate from the Classes window. Persistents are

created in the same way as a class or method, and can be double-clicked to display

their values. Persistents allow the user to manipulate objects and store them within

the program so that they can be used later during the execution of the program, or

recalled during another execution of the program. Operator E represents a local

method operation and exemplify the encapsulation concept for managing complex

methods. It is only accessible within the containing method. Operator F represents

21

a typical primitive operation. Primitive are pre-defined methods provided by

Prograph.

a. Message PassingfInvoking a Method

Message passing, or invoking a method, in Prograph is accomplished

by creating an operation with the same name of the method being called. Prograph

assigns the operation the correct arity, number of input terminals and output roots,

based upon the arity of the method being called.

Methods may be invoked in several manners. Figure 2.7 shows four of

the most common means of calling a method. They include: universal reference,

explicit reference, data-determined, context-determined reference.

Method A represents a universal reference, where the format is
"method". This is simply a call to a predefined, global method. Prograph will look

for the method draw in its universal methods file.

My Window/MH Drau

A. rwD fVVno da

Figure 2.7 Method Calling Formats

22

Method B represents a data-determined reference and has a format of

"/method." The class of the object entering on terminal- 1, of the method, determines

where Prograph will look for the proper method. Data-determined references

exemplifies the concept of polymorphism.

Method C represents a context-determined reference, and is of the

format "//method." This form of reference indicates that the named method is to be

found in the same class as the current method that contains the method referencing

operation. This is a means of sending a message to itself.

Method D represents an explicit reference, and is of the form "class/

method." Prograph attempts to find the specified method in the specified class. If the

method is not found in the specified class, Prograph will use the inheritance link to

check ancestor classes.

b. Control Structures

Control structures are essential features to any language. Prograph has

an extensive set of control features. These structures are required to have positive

control of the data as it flows through the program. These features are accessible

through the Controls menu. A subset of Prograph's control structures will be

discussed here-in-below.

Most programming languages provide a means of conditional program

execution. In text-based languages, a particular syntax is used to structure such

variations in program flow. Typical language constructs for conditional execution

are: If <condition> Then <response> End or If <condition> Then <trueresponse>

Else <falseresponse> End or While <condition> Do <this> End or typical Case

statements.

The most basic Prograph conditional execution form is the Next Case

annotation with a match operation or a conditional test based on one or more of the

23

available boolean primitives. Next Case annotation has two forms, Next Case on

Failure, and Next Case on Success. These control structures are represented by a

small box icon attached to the right of the operation. Next Case on Failure has an

(X) enclosed in the box, while Next Case on Success has a ('4) enclosed in a box.

Figure 2.8 shows the format of a typical Next Case on Failure. This

structure attached to a boolean operation means, "if this test fails, go to the next

case." The same structure attached to a match operation means, "if the value coming

into this match operation is not equal to the constant value of this operation, go to

the next case." The Next Case on Failure example is completely documented for

further review and understanding of this control structure.

Figure 2.9 shows the format of a typical Next Case on Success. This

structure attached to a boolean operation means, "if this test succeeds, go to the next

case." The same structure attached to a match operation means, "if the value coming

into this match operation is equal to the constant value of this operation, go to the

next case." Additionally, the Next Case on Success example is completely

documented for further review and understanding of this control structure.

24

SControl/if-then-else#I 1:1

A simple if statement, of the form:
IF value = A THEN do.a ELSE do b

I1 if-then-else 1:2 I if-then-else 2:2

NA. " a '.. This is the do b code,
Next case on failure to be A. executed because

A x vlue A.
& LJ If value A, stay in this case.

If value A, do the next case. This second case is executed only when a
.next case'control fires in the previous

__case. (When the input is not A.)

Figure 2.8 Case on Fail Control Structure

25

Control/if-then-else#2 1:1

A or B? A B

SA slightly more complicated case,
F value 0 B THEN case 1 ELSE case 2W

value
A M if-then-else 2:2

The dob code, executed because a next case(•J if-then-else 1:2 fired in the last case, which happened because

value M B.jn Next case on B. A 'B, a 1l'...

O therwise, do this case

F value 9 B THEN so
case I This second case is executed only when a

ELSE (value - B) next case' cntrol fires in the previous

case 2 case. (When the input is a B.)

Figure 2.9 Case Success Control Structure

Since Prograph is inherently parallel, and an operations' execution is

only dependent upon the availability of input data, control of the relative order of

program execution can be very important. Figure 2.10 shows Prograph's synchro

control structure. This enables the programmer to control the relative order of the

execution of a program.

Additional Prograph control features include Continue, Finish, Fail,

Inject, List, Loop, and Terminate structures, however, these won't be discussed here-

in.

26

Control/Syncro 1:1

Figure 2.10 Synchro Control Structure

27

III. DATAFLOW TURTLE GRAPHICS

The previous chapters were presented to give the reader a basic understanding

of Object-Oriented Programming, Turtle Graphics Programming, and the Visual

Dataflow Programming with Prograph. This chapter presents the reasoning for

implementing a Visual Dataflow Programming Turtle Graphics Language.

Additionally, this chapter will explain the design and specifications considered in

implementing DFTG.

A. LANGUAGE EVOLUTION

Programming Languages have evolved through multiple generations, over the

last thirty years, from low level, to high level, to very high level, to ultra high level.

Although there is no universal agreement on the division and definition of the

different levels of languages, one characteristic stands out without much dispute: as

the level goes up, fewer details are required from the user.

Another observation is that, with few exceptions, the tradition of linear

representations persists from generation to generation. Instructions are given to the

computer in a statement-by-statement manner. The structure of the programming

languages remains one-dimensional and textual.

In contrast, visual programming represents a conceptually revolutionary

departure from this tradition. Graphical representations and pictures have come into

play in the programming process. This evolvement of the traditional programming

language is stimulated by several premises.

1. Pictures are more powerful than words as a means of communication.
They can convey more meaning in a more concise unit of expression.

2. Pictures aid understanding and remembering.
3. Pictures may provide an incentive for learning to program.
4. Pictures do not have language barriers. When properly designed, they

are understood by people regardless of what language they speak.

28

Additionally, visual programming has gained momentum in the past few years

because the falling cost of graphics-related hardware and software has made it

feasible to use pictures as a means of communicating with the computers.

B. WHY VISUAL PROGRAMMING

The challenge at hand is to bring computer capabilities, simply and usefully, to

people without special training in programming. Visual programming represents a

conceptually revolutionary approach to meet this challenge. This section pursues the

basis for implementing Turtle Graphics in a visual programming style.

1. Dual Brain Theory

The human brain is divided into two hemispheres. For the control of

movement and analysis of sensation, the assignment of duties to the two

hemispheres follows a simple pattern: Each side of the brain is responsible mainly

for the other side of the body. However, the distribution of the more specialized

functions is quite different. Linguistic ability is dependent primarily on the left

hemisphere, while the perception of melodies and nonverbal visual patterns is

largely a function of the right hemisphere.

Additionally, it is generally believed that the left side of the brain thinks

analytically and logically, while the right side thinks in a more intuitive and artistic

sense. The left side is thought of as a sequential information processor, highly

developed for verbal expressions. The right side, on the other hand, seems to be

capable of more parallel processing. An image is captured as a whole. For example,

when a face is seen, an immediate recognition takes place [Shu88].

Programming has always been thought of as an activity which requires the

ability to think analytically, logically, and verbally. Visual programming represents

a recent attempt to exploit the nonverbal capabilities of the right side of the brain.

29

2. A Need For a New Programming Style

Recently, the decreasing cost of computing, coupled with the widespread

use of personal computers, has acted like a catalyst for more applications. By

necessity, end-user computing is becoming a major trend, and expected to grow in

the future. It will be extremely difficult to achieve this phenomenal rate of growth

unless the style of computing evolves to such a state that a large portion of the user

population can use a computer without thinking deliberately about it, much like

driving any car. Thanks to the engineers who made it possible, it is not a concern

with how an automobile works. Instead, energies can be spent deciding how to get

from one place to another.

Learning to program in the traditional text-based languages, unfortunately,

is a time-consuming and often frustrating endeavor. Moreover, even after the skill is

learned, writing and testing a program is still a time consuming and labor-intensive

chore. Programming has the tendency to lead to what has been termed "analysis

paralysis." This refers to forgetting what the intent of the process is to produce by

getting wrapped up in process of getting it out [Shu88]. It is precisely for these

reasons that a Visual Dataflow Turtle Graphics Language was implemented in this

research. It will provide the end-user with an intuitive, easy to learn, tool thus,

allowing the user to spend more time on the critical, problem-solving thought

process, rather than on the constructs and syntax of the language.

C. WHY DATAFLOW PROGRAMMING

For many years, graphs and diagrams of various sorts have been used as visual

aids for the illustration or documentation of one or more aspects of the programs.

But these graphical aids, for the most part, did not comprise the programs

themselves. They were not executable. Until recently, the high cost of the graphical

30

terminals, and the large data storage needed for graphical representations, have kept

the graphing and diagramming techniques on paper only.

However, the result of advances in technology and economics have made

possible the incorporation of charts, graphs, and diagrams as graphical extensions of

executable code.

1. Executable versus Non-Executable Diagrams

By taking a look at the traditional process of programming, multiple

advantages can be seen by making charts, graphs, and diagrams executable.

Traditionally, programming involves several distinct phases: problem analysis, chart

or diagrammatic program depiction, translation (compiling/interpreting), and

testing. And, more often than not, these processes would require several iterations at

various points.

One serious problem with non-executable, visual programming aids, has to

do with the need to keep both the charts or diagrams, and the code (which are

basically two representations of the same program) up-to-date. It is not surprising

that somewhere in the debugging process, the visual aids, no longer represents the

actual code that is executed, and consequently creates problems in later maintenance

of the program. Making charts or diagrams executable is an attempt to collapse the

two separate processes (charting and coding) into one. This not only makes

programs easier to comprehend, but also easier to document and to maintain.

Through the emulation of Prographs' dataflow paradigm, Dataflow Turtle

Graphics provides a very-high-level dataflow programming tool that is directly

translatable into executable code.

2. Dataflow Functionality

Dataflow languages sequence program actions by a simple data availability

firing rule. When an operation's arguments are available, it is said to be "firable."

31

After firing, the operation's result is passed, via the diagram, to other operations

which need these results as there arguments. Dataflow programs are easily

integrated with larger programs through a simple diagram connection line. The

diagrams present an intuitive view of the potential concurrency in the execution of

the program, as well as, providing a formal meaning to the program itself.

D. ICONIC LANGUAGES

Iconic systems are made up of both visual and audible icons. While some

literary systems are capable of expressing an infinite range of feelings, ideas,

concepts, and thoughts, programming languages do not need the same range of

expressiveness. However, through the study of literary systems, several lessons can

be observed.

1. Iconic Guidelines

Since the clarity or meaning of a pictorial icon is not always apparent, it is

essential to spend time with the design of icons. As with any tool, there are good

pictures and bad pictures. The result of implementing the latter, may be to produce

objects or concepts that are confusing or hard to remember.

Another common argument for employing graphics and icons is, that by

doing so, the brain can be tapped for it's powerful pattern recognition capabilities.

It must be noted, however, that the human brain is susceptible to information

overload. It is important that the graphics are not so overwhelming that they can no

longer be processed effectively.

Lastly, providing access to an icon's definition is extremely important and

necessary for an iconic language. A dictionary must be provided for the potential

vast number of pictures in an iconic system. When the number of icons is small, it

is possible to have them presented on the screen so that the user can point to the one

desired. This method is not possible when the number of icons is large.

32

Iconic programming languages provide an incentive to learning. Pictures

provide the user with challenge, fantasy, and curiosity. It is for these reasons that all

visual systems must incorporate some level of iconic programming.

E. TURTLE GRAPHICS DESIGN AND IMPLEMENTATION

The design and implementation of Dataflow Turtle Graphics is centered upon

creating a graphics programming tool that combines the benefits of visual dataflow

programming, including the use of icons, with the extremely successful concept of

Turtle Graphics. By exploiting the benefits of the chosen programming style, it is

possible to increase the benefits gained through Turtle Graphics.

The system is designed for the user to interface through a windowing

environment utilizing a mouse. Additionally, it provides standard Macintosh editing

functionality, and on-line Help. All Menu options are supported by "Hot Keys."

The design and implementation for this research was basically two-fold. First,

it was necessary to create a Turtle object, with specific attributes, that could be

defined by the user. Having created this Turtle object, it was then necessary to define

how this object should respond, behaviorally, to specifics messages. These methods

of behavior include, but are not limited to: forward, turnto, turnmight, ect., and are

fully defined in Appendix A.

At the completion of this implementation phase, the user was required to

interact directly with the Prograph programming environment to program the Turtle.

This led to the second, and most demanding, phase of the implementation process.

To remove the necessity of the user being required to learn Prograph, it was

necessary to integrate the Turtle Graphics code with a portion of code from

Armedeus1. The successful completion of this code integration exemplified the

1. Armedeus is a visual, object-oriented database, thesis developed by several students under advise-
ment by C. Thomas Wu, Prof., Computer Science Department, Naval Postgraduate School,
Monterey, Ca.

33

object-oriented concepts of developing reusable, sharable, integratable, and

extendable code.

1. Developing Turtle Class/Objects and Methods

The design of the Turtle Class was driven, primarily, by what behaviors the

objects of the class were required to perform. General behaviors included the ability

to draw graphics, through various manipulations, on the screen. The code for this

phase of implementation was developed and tested prior to integration.

a. Class Hierarchy

The design of the Class hierarchy was based on the need for creating

Turtle objects, as well as, the requirement to develope a user interface to define and

test the graphics tool. Figure 3.1 shows the graphical class hierarchy for the first

phase of implementation.

The Turtle Class would be the template class for all Turtle objects

created thereafter. It would include the necessary attributes and methods common to

all Turtle objects. The pTurtle Class contains an augmented list of methods and

attributes, necessary to respond to more complex user commands.

ER Classes

Application Menu Menui Item. Winidow Window Item.
"4 • pTw-tle

TurtleVim Turtlelaker

Figure 3.1 Class Hierarchy

34

The user interface was developed to define the Turtle object, and for

displaying all graphics. TurtleWin and TurtleMaker Classes provide the templates

for the user interface needs. The general function of these interface windows, for the

first phase of implementation, is provided below. Final interface-window

functionality will be provided with the discussion of the implementation of the

second phase.

b. Turtle/p Turtle Class Definitions

Figure 3.2 depicts the graphical representation of Turtle Class. It

contains the necessary framework to define specific Turtle instances. Additionally,

in this implementation, it serves as the superclass for the subclass pTurtle.

V Turtle • Turtle

"Turtle name...A=M

V 5
name pendews pOnup

(200 200)

0 turaright turmleft

heading
(11 dravto forward

tailVidth

"Black"

V goto
trailColor

TRUE

V
Trail On? set up to draw

Figure 3.2 Turtle Class Definition

Figure 3.3 shows the graphical representation for pTurtle class.

Although all attributes are not shown, pTurtle class has inherited all Turtle class

35

attributes. Additionally, it has augmented its attribute list with the attribute program,

and its methods with several complex methods to expand the users list of available

commands.

V pTurtle Mp pTurtle

heading circle d*Side&Turn

tailVidth plgndo polygofdeel
NULL

trailColor
square doPely Side&TurnNULL

Trail On?

NULL triangle Cyclev parallelogram

program

r l 1 . rectangle doRect

Figure 3.3 pTurtle Class Definition

To support drawing routines, it was necessary for each Turtle instance

to know some basic information about itself. At a minimum, the Turtle object had

to know its location on the drawing screen, the heading or direction it was going, and

its name. To give the user some additional control over the Turtle, pen-characteristic

controls were provided. These controls include, setting the pen-width, setting the

pen-color, and turning the pen on and off. A more complete definition of these

methods is provided in Appendix A.

c. User Interface Design and Implementation: First Phase

Developing an intuitive user interface should be the goal of any

interactive program. The interface design for Dataflow Turtle Graphics requires the

36

user to interact in a windowing environment using a mouse. The system provides

standard Macintosh editing functionality, as well as, on-line help and "Hot Keys"

for all Menu options.

The first phase of implementation consisted of three general interface

windows and a menu bar. Turtle Maker, Turtle Display, Prograph's method-

programming windows, and File, Edit, and Turtles menu options.

Figure 3.4 shows the Turtle Display window which displays the

graphics routines that have been programmed. The Draw button serves two purposes

Turtle Display

PIN

Figure 3.4 Graphics Display Window

by initiating the drawing of all programs that have their "Trail On?" switches set,

(see Figure 3.6), and also by activating Prographs' method programming window

for those Turtles that have not yet been programmed. The Clear button simply clears

the graphics screen.

Figure 3.5 shows the Turtles menu options. The New option will open

the Turtle Maker interface window (see Figure 3.6), allowing the user to set specific

Turtle attributes. The Delete option removes one of the listed Turtle programs that

37

appear below the g- -line. The check-symbol, appearing next to the name implies

that the Turtles' "Trail On?" attribute is set, and represents whether a program is

active for drawing purposes.

Turtles
New

Delete

VProgram 1

Program 2

Figure 3.5 Turtles Menu Option

Figure 3.6 shows the Turtle-definition interface window. This is

opened when the New option in the Turtles menu is selected, or if any of the listed

programs is selected. This provides an editable environment for setting or changing

the name, heading, location, pen-size (Trail Width), pen-on/off (Trail On?), and pen

style or color (Trail Color) attributes. The result of depressing the OK button sets the

attributes of a previously defined Turtle, or creates and sets the attributes of a new

Turtle object. Cancel button simply cancels the operation and returns to the graphics

display window. The format for entering location information is "(vertical-offset

horizontal-offset)". The origin of the screen, (0 0), is located at the upper-left -

hand, comer of the display screen. Turtle heading information is entered as a

positive integer value, 0 - 360. Compass heading relations are: North-0, South-180,

East-90, and West-270.

38

Turtle Maker

Name

Location Heading

zzzz
Tail Width In Pixels

o0 03 06
02 0_. 018
[•'Tratil I? Trail Color

0 Blacl.k

0 K __ý0 lD 1l i teP

n Iai c'el OI. ile (Wag
0OuIlrk b~rayl

Figure 3.6 Turtle Attribute Interface Window

2. Integration of Turtle Code and Dataflow Programming Code

After completing the first phase of design and implementation, it was

necessary to relieve the user from the requirement of Turtle programming within

Prographs' method-definition window. Armedeus provided the necessary visual

dataflow programming environment to be integrated with the completed Turtle

Graphic code.

a. Class Hierarchy

Figure 3.7 shows the revised class structure for the final Dataflow

Turtle Graphics language. The obvious goal was to maximize the benefits of the

object-oriented design by taking a "black box" approach with the code integration.

39

Turtle hierarchy remained disconnected from the Dataflow hierarchy, and new

subclasses were created as required.

e Classes

em

Application Menu Menu Item-Vindov Vindow Item

Turtle Turtlelaker DFEvalrater

FNConnector

pTurtle DFOratr

DFParaeter 4 DFUsrOpr
DFTurtle DFInputBar \-/IDrO

DFOutputBar DFPre DFram

Figure 3.7 Datafiow Turtle Graphics Class Hierarchy

The Dataflow system, in general, provided the windowing environment for

the programming interface, and the code for the interpretation of the programmed

objects. Some changes in the existing code was necessary to support the correct

translation of new programming objects. However, the intent of this research was

not to re-design the code provided by Armedeus, but rather to re-use as much of the

existing code as possible to efficiently create a functional Dataflow Turtle Graphics

prototype, thus maximizing the benefits of an object-oriented design.

b. DFObject and Descendents

DFObject represents the superclass for all programming objects. It has

two immediate descendents, DFOperator and DFNonOpr. DFOperator represents

40

the superclass for all objects that translate into either predefined primitive operators/

user commands or user defined operators/commands. Additional descendents

include input bar, output bar, and DFProgram. These latter three objects remain in

the design and implementation phase and are not completely functional. All of these

objects have single or multiple input values and a single output value.

DFNonOpr represents those objects that do not translate into graphics

commands. These objects have only a single output value which is an integer or a

Turtle object.

c. User Interface Design and Implementation: Second Phase

The second phase of design and interface implementation consists of

three general interface windows; Turtle Maker, Turtle Display, and Manipulation

Window. The Menu bar consists of File, Edit, and Turtles options. The major

interface changes required the incorporation of Armedeus' Manipulation Window

for dataflow programming, and removing some of the functionality of the old Turtle

Display window. The Turtle Maker interface window remained unchanged,

however the means of accessing it has expanded to include double-clicking a Turtle

object on the Manipulation Window.

Figure 3.8 is the Manipulation Window used for programming the

Turtle objects. It contains several function buttons, and a programming pad. Generic

input programming objects are place on the pad by clicking anywhere on that pad.

After typing the desired object name (turtle name, command name, or integer value)

into the generic input object, an appropriate object icon will replace the generic

object. The object "Sam" shows the icon representing a Turtle object. Objects may

be removed from the programming pad by clicking on them, to highlight them, and

depressing the keyboard Delete button. Manipulation Window button functionality

follows:

41

Display Program will provide a listing of previously defined programs for the user

select to be displayed on the programming pad. Save Program prompts the user to

name the displayed program, and saves that program for further reference. Delete

Program provides a listing of saved programs, and prompts the user to select one

for deletion. Clear simply clears the programming pad. Redraw will refresh the

programming pad with the latest displayed program. Define Primitive is not

completely functional, but it provides the user the ability to define a new primitive

command. The user will be prompted to name the new command, after which the

programming pad will be augmented with the appropriate number of input bars and

an output bar. The user will then finish the dataflow program and depress the Save

Primitive button. This will save the displayed program as a new user command for

further use. Additionally, the Help listing will be updated to include this latest

command. The Draw-Turtle-Icon button represents the function of drawing or

executing the displayed program.

Manipulation Window ________

(Display Program]

SSave Pro gram

Sam ________

a (Delete Program)

(Clear) (RedrawJ

(Define Primitive

Save Primitive

Figure 3.8 Dataflow Programming Window

42

Figure 3.9 is the revised Turtle Display window. It is activated by

depressing the Draw-Turtle-Icon button. Much of the original functionality of this

window was moved to the Manipulation Window, since Turtle Display window was

no longer the main program-window. The OK button clears and returns the

operation back to the Manipulation Window for new or revised programming. The

Print button will print the displayed graphics.

Turtle Display

Displayed Graphics
are either discarded
or may be printed.

Figure 3.9 Revised Turtle Display Window

One last interface window, not previously discussed, is the Help

window. This window, although accessible to the user, does not yet contain

command help information, nor is it automatically augmented with the creation of

43

new user defined commands. Figure 3.10 shows this interface and explains its

design and implementation.

Turtle Graphics Help

Sr?...........

IThis window will display definitions for al!
fZ

,predefined user primitives. It will be accessed
;either by the Help-option from the File Menu or will
lbe directly accessed by "option-clicking" on the
Idesired command. Additionally, this list will be
'augmented with the addition of each new user
Idefined primitive.

!I

Figure 3.10 Turtle Graphics Help Window

d. Program Objects: Icon-Description and Functionality

Figure 3.11 shows the Manipulation Window with various

programming objects. The lettering of each object was added for clarity of

discussion. Object A, as stated previously, represents a programmable Turtle

Object. The Turtle icon has only a single output value, since it does not require any

input information for execution. Double clicking on this object will automatically

open the Turtle's Maker-definition window for reviewing or editing. Object B,

represents an integer value parameter, and also has only a single output value.

Object C, is a typical predefined operator/command, and is represented by a "black

box" with the appropriate number of input terminals and an output terminal. Double-

clicking on any predefined operator will open the Help window to review its

definition. Object D represents an operation that encapsulates a program. It's icon

consists of multiple black boxes, and has no inputs or output, since it represents a

stored programmed. Figure 3.12 shows the result of double-clicking on any

44

program-operator. This is the actual code that defines the program and can be edited

as required. Object E represents a user defined operator. Its icon is identical to any

Manipulation Window

A. nrl0 B.

C. _forward_ _isl,!. Poram

[Delele P.I(ijr

E. [newcommandJ i fid'L

Figure 3.11 Programming Object Icons

predefined operator, since it functions in the same manner as a predefined operator.

However, when these objects are double-clicked, their associated program window

opens for editing or reviewing. Figure 3.13 shows the code for the newcommand

operator.

Turtles are programmed by connecting dataflow lines between

appropriate roots and terminals. This is achieved by clicking on either of these

objects, then clicking to the point of connection. Programmers are prevented from

connecting root-to-root or terminal-to-terminal, and are provided a warning

message.

45

Manipulation Window

195 144

5 fl-),IS pioa Prograrn

Save Progprafl

([eleirle P-.oiFoL,

s,(Sv F'imilie

Figure 3.12 Stored Program Code for Star

Appendix A provides detailed definitions for all predefined user

commands. Chapter IV will show how to use these tools to produce a Dataflow

Turtle Graphics solution for a particular project.

46

do~ide~uieiSd1(~ Pr ogramY

Figure 3.13 User-Defined Operator Code

47

IV. PROBLEM SOLVING WITH DATAFLOW TURTLE GRAPHICS

A. GENERAL DISCUSSION

The primary purpose of this chapter is to show how to utilize the tools provided

in this thesis to solve a particular problem. It is assumed that the user has the basic

knowledge of Prograph to activate the Turtle Graphics Application. Additionally, the

user will be required to save any programming done in Turtle Graphics, at the

Prograph prompt, when quitting. Lastly, all figures show the actual programming

and output windows from the functional prototype.

B. PROBLEM STATEMENT

The problem at hand is to create a very basic Dataflow Turtle Graphics solution

to display a picture of a "man". Keep in mind that the crude graphics are not as

important as are the steps that were taken to complete the project.

C. DEVELOPING A SOLUTION

First, and foremost, there is no single correct solution to this problem. The

approach to the solution herein attempts to follow the same concepts that have been

brought forward in this research. The limits of the functionality of the prototype, in

some cases, has required relatively complex coding to achieve a simple result.

1. DFTG's Object-Oriented Approach to Problem Solving

Dataflow Turtle Graphics provides an intuitive tool, in the turtle metaphor,

for programming specific components of an overall solution. The turtle class

represents a logical collection of abstract turtle objects instead of subprograms, as in

earlier developments of Turtle Graphic languages. The flexible and intuitive nature

of Dataflow Turtle Graphics provides for a sound object-oriented programming

solution to problems. DFTG allows the user to modularize, or partition, the problem

into individual components, thus reducing the overall complexity by creating a

48

number of well-defined boundaries within the program. The development life cycle,

using DFTG, emphasizes the incremental, iterative development of a solution. The

intent is to design, program, and test components separately. As components are

completed, they are integrated until the entire solution has been programmed. With

this approach, there is never a big-bang event of system integration.

2. "Man-Project" Problem Reduction

The generic image of a "man" object will be divided into the following

separate components: Head, Face, Body, Arms, Legs, and a Bowtie. Each

component will be programmed with it's own individual Turtle object, with the

exception of the arms and legs, which will use the same Turtle. Separate Turtles

allow for individual characteristics and controls over that specific part. Additionally,

separate turtle objects offer the abstraction benefit for developing these individual

components. As components are completed they will be integrated together to solve

the overall project.

a. Create Turtles

The first thing to do is to create some new Turtle objects. This is

accomplished by selecting New from the Turtles Menu. Each Turtle will be uniquely

named and defined.

b. Creating the Head

Figure 4.1 represents the code to display a crude head object. To execute

the displayed program, depress the Turtle Draw Icon. When satisfied with the

displayed code simply depress the Save Program button. Name this program, head,

at the prompt. This, in affect, has encapsulated the displayed code in a single

command.

49

Manipulation Window

nr2
90

turnto 4

circle

Figure 4.1 Head Solution

c. Create a Face

The next step is to create a face for the head object. Figure 4.2 shows the

code to create this face. This Turtle is responsible for drawing the eyes and mouth.

This code shows clearly, the need for a "move" operation that has the same result as

a "forward" operation with no drawing. Again, when satisfied, save this

code as face.

Figure 4.3 shows the encapsulated code, and the results of executing the

head and face routines. Any changes, made to the individual routines to satisfy

integration, must be saved at the prompt.

d. Create a body

Figure 4.4 shows the code to create a body for this project. It consists of a

neck and trunk shape. Again, when the solution for the body is acceptable, save this

program as body.

50

Manipulation Window

S90 1
nr6 6

25 plo

1850

Figur onFc Slto

resltofthis execution

7 510

Manipulation Window Display Window

~ 00

Figure 4.3 Head/Face Integration

At this point, there exists solution routines for head, face, body, and bowtie.

Figure 4.7 shows the code and results of executing these routines together.

Manipulation Window

r 1100nr3 (100 140}) - r-

Figure 4.4 Body Solution

52

f. Create legs

Figure 4.8 shows the code for the creating legs for the man object. Figure

4.9 shows the results of integrating the previously defined routines with the legs

routine.

Manipulation Window

nrl 65

Figure 4.5Bowtie Solution

Manipulation Window Display Window

Figure 4.61ntegrated Body/Bowtie Solution

53

Manipulation Window Display Window

bowtie0

Figure 4.7 Head/Body Integrated Solution

g. Create arms

Creating the arms will complete the modular development of the "man"

project. Figure 4.10 shows the code to display arms for the man. Figure 4.11 shows

the integration of the previously defined routines and the arms routine.

h. Final Code Encapsulation

In order to display the project, "man", in a single command, depress

Save Program while all subroutine calls are displayed. Enter man at the name-

program prompt. Figure 4.12 shows the new call to the encapsulated man routine.

This now can be used with other encapsulated routines to develope additional

displays. Keep in mind, the idea is to break up a large problem into smaller,

manageable components, complete or solve the smaller components, and then

integrate the completed routines to solve the larger problem. It's a simple, yet

powerful problem solving strategy, that can be reinforced and refined through the

use of Dataflow Turtle Graphics Programming.

54

Manipulation Window

nr4 9020

60

Figure 4.9 Head/Boy/Legs Integration

55

Manipulation Window

nr4 35' 15 7
{I15080O}

Figure 4.10 Arms Solution

Manipulation Window

00

lbow
tie

r
r l

Figure 4.11Complete Integration

56

Manipulation Window

Figure 4.12 Final Man Encapsulation

57

V. SUMMARY, CONCLUSIONS, & SUGGESTIONS FOR FUTURE
RESEARCH

The purpose of this research was to design and implement a Dataflow Turtle

Graphics programming language for children to use to develop their problem

solving skills, as well as their fundamental programming skills. This research

provides the first stage of development for a complete Turtle Graphics Language.

There was no related research locally, prior to this implementation of Turtle

Graphics, however this project does use some special purpose code, dataflow

programming environment, developed in another research project, Arnedeus1 .

A. SUMMARY

In summary, a complete literature review was accomplished in which Object-

Oriented programming, Logo's Turtle Graphics programming, and the Dataflow

Programming Language Prograph were researched. The design and specifications

for developing a Dataflow Turtle Graphics Language was reviewed, and an object-

oriented prototype was implemented.

This research development has come from the intersection of a multiplicity of

ideas including: Object-Oriented program design, Turtle Graphics, and Visual

Dataflow Programming. The proposed combination of concepts presented in this

research provide a new and exciting tool. It is characterized by being generally

accessible, and offering a service perceived as being usable and useful to a variety

of users.

1. Armedeus is a visual, object-oriented database, thesis developed by several students under advise-
ment by C. Thomas Wu, Prof., Computer Science Department. Naval Postgraduate School,
Monterey, Ca.

58

B. CONCLUSIONS

The strongest indicator of Turtle Graphics effectiveness is that studies are

conducted on how it helps children. In itself this demonstrates it's wide recognition.

Unlike a multitude of educational software, versions of Turtle Graphics languages

have evolved over the past 30 years, and is as worthwhile now as when it was first

introduced. Along with the development of Logo language, comes the

encouragement users require to explore, learn, and think.

Dataflow Turtle Graphics, through the combination of the Turtle-metaphor in

Turtle Graphics and Dataflow programming, provides users with an intuitive tool

that allows them to spend less time learning the linguistic constructs and syntax of

the programming language, and more time on the key issue of problem solving. This

is primarily do to visual style of programming required to solve problems. The

visual implementation of this prototype language, including the dataflow paradigm

and iconic constructs, is easy to learn and offers new users the power to program

relatively complex graphics routines in short order. It provides users with a

programming tool that is more in-line with the natural way of thinking.

Although DFTG is not a complete programming language, it provides the

necessary features to argue for further development of a fully complete Dataflow

Turtle Graphics Language.

C. SUGGESTIONS FOR FUTURE RESEARCH

Future research in this area should include, but is not limited to, the following

areas: completion of "user-defined Turtle command" functionality, completion of
"user-help" functionality, implementation of additional Turtle functionality,

expansion of language control constructs, implementation of more complete error

detecting capabilities, and the incorporation of a programming pallet of available

commands to speed up and simplify the programming process.

59

1. Completion of "user.defined Turtle command" functionality

This programming feature is necessary for all languages. Although this

feature is not completely functional, this prototype does show the added power and

flexibility that it would provide. User-defined commands provide a means for

programmers to fully explore their creative problem solving skills.

2. Completion of "user-help" functionality

DFTG has provided the necessary windowing interface for Help support,

however the complete command definitions need to be incorporated. Expanded

functionality would include, the ability to access any command-definition directly

without browsing through the entire dictionary, and the ability to augment the

dictionary with the creation of new user-defined commands.

3. Expand language control constructs

This prototype is limited in its control constructs. The user needs to be able

to control the flow of its program throughout. At a minimum, DFTG should be able

to support looping, next-case, and termination capabilities. At present, DFTG's

complex predefined commands, such as square, polygon, doSide&Turn, ect.,

provide an iterative function through their right most terminals.

4. Fully implement Error detection/correction capabilities

Error messages should be clear and informative. Warning messages should

provide the user with the ability to correct a situation before program execution. It

is sometimes desirable to be provide a warning message prior to saving changes to

an existing program or deleting portions of code. Additionally, it might be especially

helpful to be warned when duplicate names are being used for different programs.

The bottomline is that, DFTG needs to provide a friendly and forgiving environment

60

for programming. This, in and of itself, will encourage the user to continue to use

DFTG.

5. Incorporate a programming pallet of available commands

Programming pallets have shown to be quite useful in graphics

applications. Providing a pallet of user commands would provide a means to

simplify writing programs, as well as speed up project development.

6. Implement additional Turtle functionality

DFTG's object-oriented design has left the door open for adding new Turtle

functionality. This may include, but is not limited to, adding math symbols to create

math functions, using sound for creating music, and incorporating pictures for

creating visual story books.

7. Perform statistical studies of user effectiveness

Do to the limited functionality of the present implementation of Dataflow

Turtle Graphics, it was not possible to include user studies to substantiate it's

effectiveness. As the functionality of Dataflow Turtle Graphics expands, there

should be an in depth analysis of the actual effectiveness of this Turtle Graphics

versus the traditional text-based versions of Turtle Graphics.

61

APPENDIX A - USER COMMAND/METHOD DEFINITIONS

A. Turtle Class

1. forward

Description: Draws a line, in the direction of the input turtle heading, of

length equal to the distance of the input number.

input: turtle; number (distance)

output: turtle

2. drawto

Description: Draws a line from the location of the input turtle to a specific

location on the display screen.

input: turtle; point {X-vertical displacement Y-horizontal displacement)

output: turtle

3. goto

Description: Moves the input turtle from its present location to a specific

location on the display screen. No line is drawn.

input: turtle; point {X-vertical displacement Y-horizontal displacement)

output: turtle

4. turnright

Description: Shifts the input turtle's heading, X-degrees, in a clockwise

manner.

input: turtle; number (X-degrees)

output: turtle

62

5. turnleft

Description: Shifts the input turtle's heading, X-degrees, in a

counterclockwise manner.

input: turtle; number (X-degrees)

output: turtle

6. turnto

Description: Shifts the input turtle's heading to a specific heading: North -

0 or 360, South - 180, East - 90, West - 270.

input: turtle; number (X-degrees)

output: turtle

7. penup

Description: Deactivates the drawing capability of the input turtle. Results

of all commands after this command remain the same with the exception that no

drawing will take place.

input: turtle

output: turtle

8. pendown

Description: Reactivates the drawing capability of the input turtle.

input: turtle

output: turtle

63

B. pTurtie Class

1. doSide&Turn

Description: Draws a line, in the direction of the input turtle heading, of

length equal to the input number(distance). The turtle heading will then be updated

by turning in the direction appropriate with the input number(degrees). A positive

input number will yield a clockwise update, while a negative input number will

cause a counterclockwise update. This command routine will be iterated as many

times as the input integer.

input: turtle; number (distance); number (degrees); integer (iterations)

output: turtle

2. polygon

Description: Draws one or more (iterations) of a polygon whose side

lengths are equal to the input number, and number of sides equal to the input integer.

After each complete iteration, the initial turtle heading will be adjusted by adding an

amount equal to (360 / number of iterations).

input: turtle; number (side length); integer (number of sides); integer

(iterations)

output: turtle

3. square

Description: Draws one or more (iterations) of a square whose side lengths

are equal to the input number. After each complete iteration, the initial turtle heading

will be adjusted by adding an amount equal to (360 / number of iterations).

input: turtle; number (side length); integer(iterations)

output: turtle

64

4. triangle

Description: Draws one or more (iterations) of an equilateral triangle whose

side length is equal to the input number. After each complete iteration, the initial

turtle heading will be adjusted by adding an amount equal to (360 / number of

iterations).

input: turtle; number (side length); integer(iterations)

output: turtle

5. circle

Description: Draws one or more (iterations) of a circle whose radius is

equal to the input number. After each complete iteration, the turtle heading will be

adjusted by adding an amount equal to (360 / number of iterations).

input: turtle; number (radius); number (radius); integer (iterations)

output: turtle

6. rectangle

Description: Draws one or more (iterations) of a rectangle whose side

length, are equal to the input numbers. After each complete iteration, the initial

turtle heading will be adjusted by adding an amount equal to (360 / number of

iterations).

input: turtle; number (side length); number (side length); integer

(iterations)

output: turtle

65

APPENDIX B - NEW TURTLE GRAPHICS - SOURCE CODE

{ Classes

gtens

Application Menu Me.n"te Viidow v ift~v Item

Turtle FOb ject TurtleVim TurtleMaker C4mmcor

V@

SDFNonOpr DFoperator DFEvaluater

DFTurtle DFParameter U DFOutputBar
DFPrimOpr DF ImputBar

66

VTurtle

NUII

name

{ 200 200)7
location

0

heading
(11)
V

tallWldth

"Black*V
trailColor

TRUE

Trail On?

OTurtle

Sinput: turtle I input: turtle, point{V H)
output:turtle [1 output:turtle

pendown Turn on turtle drawing ability. drawto Draw line to specified point.

• input: turtle input: turtle, number(heading)
output:turtle output:turtle

penup Turn off turtle drawing ability. turnto Update turtle heading to specified

• input: turtle heading.

output: none input: turtle, number(degrees)
Initialize pen output:turtle

set up to dralcharacteristics, t u r n r Ig h tRotate turtle clockwise

[input: turtle, number (distance) i
output:turtle input: turtle, number(degrees)
Draw number-length line in the output:turtle

forward forward direction. turnleft Rotate turtle counter-clockwise

input: turtle, point(V H)
output:turtle

goto Moves turtle to specified location.

New Turtle Graphics Thu, Aug 27, 1992 12:37 PM

MTurtle/set up to draw 1:1

•Turtle/set up to draw 1:1 set Pattern 1:1

t0rca 10C I

It -tternf

I Turtle/set up to draw 0:1set Pattern 1:lget pattern 1:5

New Turtle Graphics Thu, Aug 27. 1992 12:37 PM

MTurtle/set up to draw 1:1 set Pattern I:! get pattern 2:5

Gray _

MTurtte/set up to draw 1:lset Pattern 1:l get pattern 3:5

Dark Gray X

MTurtle/set up to draw 1:1 set Pattern 1:1lget pattern 4:5

MTurtle/set up to draw 1:lset Pattern 1:i get pattern 5:5

White Gr.Xj

•ltGray•

New Turtle Graphics Thu, Aug 27, 1992 12:37 PM

MTurtle/penup 1:1

turtle FLS

rr~t enu Trail1 On?

MTurtle/penup 1:lupdate menu 1:1

turtle Application

curn Turtle* pnow :

Efndew u-MeGahc h.Au 7 921:7P

MTurtle/pendown 1:1 update menu 1:1

turtle Application

curnTurtle*rnet :

turtl dere

Newtl TuteerphcgTurAg27e99e2:7P

OTurtle/turnright 1:1

tu rtle degrees

headin

headin

OTurtle/turnto 1:1

desired heading

),headino

turtle

h eadin

OTurtle/goto 1:1

Ne-utl0rpcicTtuAi ug27 99 2:7eTo P

Now Turtle Graphics Thu, Aug 27, 1992 12:37 PM

MTurtle/forward 1:6

turtlefrwrd2:

I convert to- radians

peeriorm detrifnctionspin

Ne url GahcsTuAg 7 99 2:7P

M-Turtle/ forward 3:6

4convert 7to radians

perform trig functionsi

(set new ioainldraw line?1

MTurtte/forward 4:6

Netuulrrphctle u 7,19 1:7P

MTurtle/forward 5:6

360 f

MTurtle/forward 6:6

tNuArti1eM

.headIn

roun 360

Now Turtle Graphics Thu, Aug 27, 1992 12:37 PM

WTurtle/fn.ward 1:6quadrant? 1:1

0

MTurtle/forward 1:6conuert to radians 1:1

9o0
31192654

OTurtle/forward 1:6perform trig functions 1:1

New Turtle Graphics Thu, Aug 27, 1992 12:37 PM

MTurtle/forward 1:6get int location 1:1

MTurtle/forward 1:6determine destination point 1:1

V H

raun

MTurtle/forward 1:6set new location 1:1

Now Turtle Graphics Thu, Aug 27, 1992 12:37 PM

MTurtle/forward 1:6draw line? 1:2

WTurtle/forward 1:6draw line? 2:2

IM.oveTol

MTurtle/forward 2:6quadrant? 1:1

ISO

and

Now Turtle Graphics Thu, Aug 27, 1992 12:37 PM

MTurtle/forward 2:6get int location 1:1

/V\

MTurtle/forward 2:6conuert to radians 1:1

OTurtle/forward 2:6perfonn trig functions 1:1

Now Turtle Graphics Thu, Aug 27, 1992 12:37 PM

MTurtle/forward 2:6determine destination point 1:1

V

roun roun

OTurtle/forward 2:6set new location 1:1

Into-ta-polnE

OTurtle/forward 2:6draw line? 1:2

Te sg2To7 1

Now Turtle Graphics Thu, Aug 27, 1992 12:37 PM

MTurtle/forward 2:6draw line? 2:2

MTurtle/forward 3:6quadrant? 1:1

0
2 70

and

OTurtle/forward 3:6conuert to radians 1:1

270

2
3.141592654

360

New Turtle Graphics Thu, Aug 27, 1992 12:37 PM

MTurtle/forward 3:6perform trig functions 1:1

MTurtle/forward 3:6get int location 1:1

turtle

3locatio

point-to-int

v
H

MTurtle/forward 3:6determine destination point 1:1

V H

rounNroun

Now Turtle Graphics Thu, Aug 27, 1992 12.37 PM

OTurtle/forward 3:6set new location 1:1

Into-to- oln

OTurtle/forward 3:6draw line? 1:2

OTurtle/forward 3:6draw line? 2:2

New Turtle Graphics Thu, Aug 27, 1992 12:37 PM

MTurtle/forward 4:6quadrant? 1:1

0
360

annd

MTurtle/forward 4:6conuert to radians 1:1

2 270

31192654

MTurtle/forward 4:6perform trig functions 1:1

sin T G T 2

Now Turtle Graphics Thu. Aug 27, 1992 12:37 PM

MTurtle/forward 4:(,get int location 1:1

el~turtle
lo0catlor

point-to-Int

v H

WTurtle/forward 4:6determine destination point 1:1

V H

roun roun

WTurtle/forward 4:6set new location 1:1

Into-to-eocm

locatio

Now Turtle Graphics Thu, Aug 27, 1992 12:37 PM

M-Turtle/forward 4:6draw line? 1:2

MTurtle/forward 4:6draw line? 2:2

MTurtle/drawto 1:1

Ne~w Turtle Graphics Thu, Aug 27, 1992 12:37 PM

MpTurtle/ rectangle 1:lda rectangle 1:1

doRect

Yheadin 1

headin

MpTurtle/rectangle 1:1 do rectangle 1:1ldoRect 1:1

J draw it V

MpTurtle/rectangle 1:l do rectangle 1:ldoRect 1:1ldraw it 1:1

dist. 0 w

turtle a
-0 W I

degrees~e

#of 7times -1

I//doS ld.&Turd

New Turtle Graphics Thu, Aug 27, 1992 12:"- PM

OpTurtle/triangle 1:1

turtle side Nr. of
length triangles

3

/ 01 0

MpTurtle/square 1:1

Turtle
side Nr. of
len th objects

4

MpTurtle/doSide&Turn 1:2

turtle dist. of times

FALSE ['

de rees

New Turtle Graphics Thu, Aug 27, 1992 12:52 PM

V pTurtle

name

location
NULLL

heading
NUJLL

tallWidth

NULLL

trallColor

Trail On?

program

V
canvas pad

New Turtle Graphics Thu, Aug 27, 1992 12:52 PM

(OpTurtle

I[J Input: turtle, number(side length), number(nr. of sides),
number(nr. of polygons to draw)

polygon output: turtle

[• input: turtle, number(radius), number(nr. of circles to draw)
output: turtle

circle

[• input: turtle, number(side length), number(nr. of squares to draw)
output: turtle

square

input: turtle, number(side length), number(side length),

~In number(nr. of rectangles to draw)
rectangleoutput: turtle

Sinput: turtle, number(side length), number(nr. of triangles to draw)

output: turtle
triangle

U input: turtle, number(side length), number(degrees to turn)
output: turtle

doSlde&Turn

IpTurtle/rectangle 1:1

New Turtle Graphics Thu, Aug 27, 1992 12:52 PM

MpTurtle/doSideC'Trn 2:2

turtle diet. /d aee

t urtdistds17e

do It ri ht

MpTurtle/doSide&Turn 1:2do it left 1:1

MpTurtle/doSidec~rn 2:2do it right 1:1

New Turtle Graphics Thu, Aug 27, 1992 12:52 PM

MpTurtle/polygon 1:1

turtle side 360 Nr. of

l n th r. oobjects

Nr. of
sides

,_

doo on

MpTurtle/polygon 1:1 do polygon 1:1

doPol 1~

headin

MpTurtle/polygon 1:1do polygon 1:1doPoly 1:1

turtle side length

36T

dplsidemturn•

Now Turtle Graphics Thu, Aug 27, 1992 12:52 PM

MpTurtle/polygon I:1 do polygon 1:1doPoly 1:1dopolysideDturn 1:1

/torwar

/turn left

MpTurtle/circle 1:1

turtle radius

Nr. of

3.141592654 objects

2

72

New Turtle Graphics Thu, Aug 27, 1992 12:52 PM

VTurtleWIn

"*Turtle Disp...

name
NULL

owner

FALSE

active?
KILL

window record

def ID

FALSE

modal?

FALSE

close?

selected item

{425)

location

250 250 1

size

activate method

close method

idle method

key method
()

item list

()

V
turtles

New Turtle Graphics Thu. Aug 27, 1992 1:03 PM

aTurtleWin

[• Input: window, window item, event record
output: none
Prints the display graphics window.

print drawln..

(Jinput: window, window item, event record
output: none

return Returns to the Manipulation Window

Sinput: window, window item, event record
output: none

Delete Removes a turtle object from the menu.

Sinput: menu, menu item, event record
output: none

e d it Opens the Turtle Definition window for editing

New Turtle Graphics Thu, Aug 27, 1992 1:05 PM

MTurtleWin/Delete 1:Iwho goes? 1:1

Application

,c u rren

ff~ind-window-

§1. Turtle Display

MTurtieWinlDelete 1:1delete from menu 1:1

Turtle&

Lfind-menu.

deleTurte Gra s h-u

Now Turtle Graphics Thu, Aug 27, 1992 12:58 PM

MTurtleWin/Delete 1:lwho goes? 1:1pick who goes 1:1

§1

§1. Which turtle do you want to delete?

MTurtieWin/Delete 1:1 who goes? 1:1 kill it 1:1

name

MTurtleWin/Delete 1:l delete from menu 1:l delete item 1:2

New Turtle Graphics Thu, Aug 27, 1992 12:58 PM

MTurtleWin/Delete 1:1 delete from menu 1:1 delete item 2:2

MTurtleWin/edit 1:1

find turtlefF -

o pen Maker window~

CTurtieWin/edit 1:lfind turtle 1:1

---- 'D •name

§1. Turtle Display

New Turtle Graphics Thu, Aug 27, 1992 12:58 PM

WTurtleWin/edit 1:I open Maker window 1:1

o•n iT-Maker windowi-

MTurtleWin/edit 1:lopen Maker window I:Iopen p/T Maker window 1:1

Appln feione

NTlnd windoi TRUE

•~~/Bring- To Fro~ng

name,,_ off &teletlocto

Now Turtle Graphics Thu, Aug 27, 1992 12:58 PM

IMTurtloWin/edit 1:1open Maker window 1:1open p/T Maker window 1:lname off & select location 1:1

locatio ctnv e

OTurtleWin/ print drawing 1:1

<Window> Window Item Event Recr

TRUE~c

§1

lreut cccc print-windo

§1. Turtle Graphics Display Window!

New Turtle Graphics Thu, Aug 27, 1992 12:58 PM

MTurtleWin/return 1:1

<Window>

owner
Sname

•f in d-In-s-tanciQ

o 9• <Window>

U /erlng___To:: Fr-o-n

§1. Manipulation Window

Now Turtle Graphics Thu, Aug 27, 1992 12:58 PM

VTurtleMaker

"Turtle Make...

name
NULLL

owner

FALSE

active?

NULL

window record

def ID

FALSE

modal?
TRUE

close?

WILL

selected item

{ 40 106

location

282 200 }

size

activate method

"/close"

close method

Idle method

key method
(<<Text>> <...

item list

New Turtle Graphics Thu, Aug 27, 1992 1:07 PM

OTu rt Ie fiake r

input: TurtleMaker window, window item, event record
output: none

OK Initiates turtle creation for new turtles.

- ~ input: TurtleMaker window, pTurtle input: TurtleMaker window, window item, event recordIUI output: none 9 1output: none
UZJPSets the attribute values upon opening OKedit Initiates turtle attribute definition update.

set Itern lusTurtleMaker window of defined turtle.

Sinput: TurtleMaker window, window item, event record
9 1 output: none

close Brings main Manipulation window to front.

-zm input: TurtleMaker window
input: menu, menu item, event record ftjloutput:

(JjI output: none 0 Establishes list of turtle attributes.
open MakeaOpens the TurtleMaker window prep Attribute list

MTurtlefraker/close 1:1

ýcWindow>

§1. Manipulation Window

New Turtle Graphics Thu, Aug 27. 1992 1:07 PM

MTurtleMaker/OK 1:1

-mak the trll

//ciao

MTurtleMaker/OK I:Imake the turtle 1:1

T
7

Turti

add it to the window & menu

OTurtleMaker/OK I:lmake the turtle 1:ladd it to the window P menu 1:1

owner

add to window

[add to menu 1

New Turtle Graphics Thu, Aug 27, 1992 1:07 PM

=TurtleMaker/OK 1:1make the turtle 1:1add it to the window & menu 1:1add to window 1:1

Pf Ind-w Ind ow-W

turtle

§1. Turtle Display

MTurtleMaker/OK 1:1make the turtle 1:1add it to the window & menu 1:1add t; menu 1:1

Turtles

6ý ý make menu itemi
Mfind--men-u--

Yitem lieu

FALSE

active CCCCCC attach-

N uactive

New Turtle Graphics Thu, Aug 27, 1992 1:07 PM

MTurtleMaker/OK 1:1make the turtle 1:1add it to the window & menu 1:1add to menu I:1make menu item 1:1

name ,Trail1 On4

name_ check?

Menu t

§1. (method "TurtleWin/edit')

MTurtleMaker/OKedit 1:1

II/prep Attribute Ii

new
Jupdate the turtle & menuj gIic 108

New Turtie Graphics Thu, Aug 27, 1992 1:07 PMV

OTurtle~'aker/OK edit 1:l1update the turtle P' menu 1: 1

get turtles attribute & menu o

§1.u Turtl Display

Newe TurtleGrpisTh.Ag2,191:7P

waTurtleMaker/OKedit 1:l1update the turtle D' menu 1:l1update turtle 1:2

NUTurtl upate =tribuedteslpaetetrl 'meu1lp etrl :

OTurtlet~aker/DKedit 1:lupdate the turtle C'menu 1:lupdate menu 1:1

Trail On
f Ind -It.;

Now Turtle Graphics Thu, Aug 27, 1992 1:07 PM

MTurtleMaker/prep Attribute list 1:l1prep Attribute Ualue list 2:7

name

program X

MTurtle~vaker/prep Attribute list 1:l1prep Attribute Dalue list 3:1

name

locattion

New Turtle Graphics Thu, Aug 27, 1992 1:08 PM

MTurtleMaker/prep Rttribute list 1:l1prep Attribute Value list 4:1

Iname

headingg

OTurtleI'aker/ prep Attribute list 1:1 prep Attribute Value list 5:7

name

taIIWldt[XJ

Now Turtle Grapl.,cs Thu, Aug 27, 1992 1:08 PM

ffDTurtlefraker/prep Attribute list 1:l1prep Attribute Value list 6:7

name

traiColo Xi

value

traliCa lot

ack

MTurtlefraker/ prep Attribute list 1:l1prep Attribute lialue list 7:7

name

Tri On. X

)checked.

"Trail On?"

pack

MTurtlel.aker/prep Attribute list I: Iprep Alttribute Value list 5:lmake point 1:1

Ufrom- at r Inin

Mints-to-poina

Now Turtle Graphics Thu. Aug 27, 1992 1:08 PM

OTurtleMaker/set item list 1:1

f Ind.It.

§1. (OK name location heading tailWidth trailColor "Trail On?*)

OTurtleMaker/set item list 1:1 set items 1:2

name

OK V'

set text or valuel

OTurtleMaker/set item list 1:1 set items 2:2

SlOKedlt

cNl k metho

New Turtle Graphics Thu, Aug 27, 1992 1:08 PM

OTurtleMaker/set item list 1:1set items 1:2set text or ualue 1:4

heading X

MTurtleMaker/set item list 1:1 set items 1:2set text or ualue 2:4

iname
Trail On X

<chec~ked_

MTurtleMaker/set item list 1:1 set items 1:2set text or ualue 3:4

Radio SeTsJ1

New Turtle Graphics Thu, Aug 27, 1992 1:08 PM

MTurtleMaker/set item list 1:I set items 1:2set text or ualue 4:4

~IPse aue~l

MTurtleMaker/set item list 1:1 set items 1:2set text or ualue 1:4reduce 1:2

or

i to-strin

OTurtleMaker/set item list 1:1set items 1:2set text or ualue 3:4set text 1:3

Now Turtle Graphics Thu, Aug 27, 1992 1:08 PM

MTurtleMaker/set item list 1:1set items 1:2set text or ualue 3:4set text 2:3

MTurtleMaker/set item list 1:Iset items 1:2set text or ualue 3:4set text 3:3

tox

MTurtleMaker/set item list 1: 1set items 1:2set text or ualue 4:4set ualue 1:2

Netrig G xA

Now Turtle Graphics Thu, Aug 27, 1992 1:08 PM

COTurtler.aker/set item list 1: 1set items 1:2set text or ualue 4:4set ualue 2:2

oint-to-In

to -str in

value

MTurtleMaker/openI'aker 1:1

removed llupdate menus

jo ~en Turtle-makerl

MTurtle~aker/openr'aker 1:l1open Turtle maker 1:2

owner

Turtle Maker

New Turtle Graphics Thu, Aug 27, 1992 1:08 PMV

waTurtler~aker/openMaker 1: 1 open Turtle maker 2:2

IcTrrtaenaTurtlpen Maker11opnTrlmae1:cerits11

fid- tn o

§2.(naeloa tio heading

=Turtleake/NewTurter 1:raphics Thurtl Auge 27,a 1992s 1:0 PM

COTurtleMaker/openMaker 1:l1open Turtle maker 1:2select name field 1: 1

name

f In d-It.
TRUE

selectedivt

UBTurtleI'aker/openfraker 1:l1open Turtle maker 2:2clear items 1: 1

fnam

Pzf Inf-IdoItex
MCI MOM 0 TRUE

CO~urtleaker/opN~ewTrtl Gra1phic Thu ugtemae 27,elc 1992fe 1:0 PM

V DFObject

NULL <Root> object

root

1 0 0 20 0 -location of Its body

V
bodyRect

WILL

rootValuo

FALSEV
selected?

9DFObject

[private: create <Root> m t e
and attach it move It to the sslect/deselect it

get root m~~~'tonew location LJI
go otmove to toggle

[private: computer return rectangle
center of its body rect coordinates for

bodyRect center rootInvert get root rect

0OFObject/get root rect 1:1

E/bodyRect cente*
V
center point

New Turtle Graphics Thu, Aug 27, 1992 1:21 PM

0DFObject/get root 1:1

rootoot

may need to skip his--
for inputand outpu bersOO

MDFObject/inuert 1:2

bad Rec

BinvertRoundRec

MDFObject/inuert 2:2

Now Turtle Graphics Thu, Aug 27, 1992 1:21 PM

MDF~bject/body~ect center 1:1

Calculates the center point (horiz)
YbadyRecf of input rectangle.

MDF~bject/moue to 1:1

New Turtle Graphics Thu, Aug 27, 1992 1:21 PM

IDFObject/toggle 1:1

selected?

not

selected

Now Turtle Graphics Thu, Aug 27, 1992 1:21 PM

V DFOperator

NULL <Root> object

root

{ 0 0 20 0 location of its body

bodyRect
NULL

rootValue

FALSE

selected?

V
oprname

list of <Terminal>

7 --((termrect fromObjlnstnum) ..)

terminal*

S OFOperator

[• returns terminals i1 private: return the number
connected to object of terminals for itselfgot terminals

get terminals cnt

in1 it itself Aý
I1[Il i sdraw itself on the
i~Y n iJ currently "sc-begin"

draw canvas

• private: return
a list of rects Initialize canvas and pen
for its terminals characteristics.

get terminal rects init draw

[displays info End drawing routine.
on Itself

remove show Info end draw

allows objects to be
around In window translates/executes program

move to translate

New Turtle Graphics Thu, Aug 27, 1992 1:31 PM

0DFOperator/init draw 1:1

c I gn-drmw In

Turle/etup_ to _dra

•OFOperator/translate 1:5

<self>

,/rootvaluR

not null, so
operation is
already defined, NULL V•
just return it

New Turtle Graphics Thu, Aug 27, 1992 1:31 PM

MDFOperator/translate 2:5

-317 1 1no operation is attached yet
"so compute operation for

FUrOpr V gt nthis operator by recursively
Itr a n a at calling translate to the

"terminals

detch tre/pn windowl (ent

returns operation object

New Turtle Graphics Thu, Aug 27, 1992 1:31 PM

ODffperator/translate 3:5

(9DFoperatedr/traýsaTe :

/traslatrese

Newac Turti l ea Grpi csTn u 7,19 :1P

MDFOperator/translate 5:5

go prtr objectsI1

Sconnected ect

Ireset root connections

C.C Need to reset all objects from the original definition
Cr I dback to connecting to the input and output objects.

W IM /t r a n a I a t,......•

Operator must be a user defined operator. This method needs
further testing and modification to allow user to reuse new operator
with new input values. Also need to be able to use the turtle coming
out of the ne operator.

/I / //I

MDF0perator/translate 2:5connected gFObjects 1:1

;./connectedTa

New Turtle Graphics Thu, Aug 27, 1992 1:31 PM

MDFOperator/translate 2:5get apr name 1:2

I-Tuturtl.

*~ vm

MDFOperator/translate 2:Sdetc tuteop aen winow1:

detch owrnea--rn

ýdetah-g 0'11cWindow>

I_-Br--ng__To Frani

Now Turtle Graphics Thu, Aug 27, 1992 1:31 PM

MDFOperator/ translate 2:5do processing 1:1

VDZprto/rasat :5onetd Fbjcs :

VV/Iect dT

W DFOperat or/ translate 3:5gnecte apr naect 1:2

"Nw"utlurahcs TutAul7,192131P

MDFOperator/ translate 3:5get apr name 1:2

§1. ("forward" "turnieft" "turnright' 'turnto" *goto" "penup" "pendown")

WDFOperator/transiate 3:5get opr name 2:2

/Ioprnamn

UTurtle/0

"*join

MDFOperator/ translate 3:5detach turtle/open window 1:1

J ~ d e t c h -Q w n e r < W in d o w >

=IB r in g To_ Fran

Now Turtle Graphics Thu, Aug 27, 1992 1:31 PM

MDFOperator/ translate 3:5do processing 1:1

prces heoperator tas~t :ree :

MDFOperator/transiate 4:5reset 2:2

NeaurltGahis Th.Aub7,192131P

04-D2FOperator/translate 5:5connected OFObjects 1:1

/prt-Oi

MDFOperator/transiate 5:5get operator objects 1:1

csff

user ob ectA

Cusero

MDFOperator/transiate 5:Sget list of objects 1:1

Now Turtle Graphics Thu, Aug 27, 1992 1:31 PM

IDFOperator/translate 5:5detach non-inputbar objects 1:1

MDFOperator/translate 5:5reset terminal connections 1:1

y 1• inputbar
userop list parameter
object list list

New Turtl
connections

T u 1 :

Now Turtle Graphics Thu, Aug 27, 1992 1:31 PM

MDFOperator/ translate 5:5reset root connections 1:1

rt:m1NUL agrlas

rootrol NULLCC I

cnew t~TuteGahcTh.Ag2,191:1P

MDFOperator/translate 5:5reset 2:2

MOFOperator/translate 2:5do processing 1:1process the operator 1:4

MDFOperator/transiate 2:5do processing 1:1process the operator 2:4

New Turtle Graphics Thu, Aug 27, 1992 1:31 PM

MDFOperator/ translate 2:5do processing 1:l1process the operator 3:4

0DF~perator/ translate 2:5do processing 1:l1process the operator 4:4

tour terminals

operationUna

MDF Operator/ translate 3:5do processing 1:l1process the operator 1:4

New Turtle Graphics Thu, Aug 27, 1992 1:31 PM

CDFOperator/translate 3:5do processing 1:I process the operator 2:4

WOFOperator/translate 3:5do processing 1: 1process the operator 3:4

operation

Now Turtle Graphics Thu, Aug 27, 1992 1:31 PM

MDF~perator/ translate 3:5do processing 1:l1process the operator 4:4

four terminals

unpc

operation

MDFOperator/ translate 5:5detach non-inputbar objects 1:l1remoue them 1: 1

ýdetach-Q

MDFOperator/translate 5:5reset terminal connections 1:11resolve object connections 1:1

object Ifllist 1 0 -1 Inputbar param list

,terminal~

Mvefey terminal connectionI

New Turtle Graphics Thu, Aug 27, 1992 1:31 PM

MDFOperator/translate 5:5reset terminal connections 1:1resolve object connections 1:11verify terminal connection 1:2

cconnectedT

p

•DFOperator/translate 5:5reset terminal connections 1:1resolve object connections l:lverlfy terminal connection 2:2
type

0

Now Turtle Graphics Thu, Aug 27, 1992 1:31 PM

, DFOperator/translata 5:5reset terminal connections 1:1resolve object connections 1:1verify terminal connection 1:2get in
put param 1:1

InU ermn

get-nt

MDFOperator/get terminals 1:1

(<self> temnt

N T list of rects

Now Turtle Graphics Thu, Aug 27, 1992 1:31 PM

MOFOperator/get terminals 1:1 create terminals 1:1

CC$ CCCCCC 0 (:ýj
Tormina

ýattrach-

MDFOperator/init 1:1

text

ýb
/bod Rec 'a termýnaio c4;canvLas.... textrnam PlAget

[Fset bodyRect I

ý/get roo4

roo

E/get terminaid

terminal

New Turtle Graphics Thu. Aug 27, 1992 1:31 PM

ODFOperator/init 1:l set bodgRect 1:3

"DFlnputBar

7D
~ e at r i i

t:

se

*ag

e :

DFOuutpuar '

doin utbar casel

MDFOperator/init 1:l1set bodyRect 3:3

must be outputbar
§1

bod Rec

New Turtle Graphics Thu, Aug 27, 1992 1:31 PM

MDFOperator/init 1:l1set bodyRect 3:3

§1.({200 100 210 400)

MOFOperator/init 1: 1set bodyRect 2:3doinputbar case 1: 1

)D;praorge temnl cn 1:

dy~ecfg

Re Turtc Grphc Thu Aud7t9 :1P

IOFOperator/get terminals cnt 2:8

DIFInputBor •_

MDFOperator/get terminals cnt 3:8

text

§11
In

t0"

T

§1. (*penup" "pendown")

MDFOperator/get terminals cnt 4:8

§(text

2

Now Turtle Graphics Thu, Aug 27, 1992 1:31 PM

MDFOperator/get terminals cnt 4:8

§1. (torward" "turnright" *turnieft" "turnto* "goto' "drawto")

MDF~perator/get terminals cnt 5:8

text

(in)

§1. (*square* "triangle" "circle*)

ODFOperator/get terminals cot 6i:8

Now Turtle Graphics Thu, Aug 27, 1992 1:31 PM

(MDFOperator/get terminals cnt 1:8

MDFOperator/get terminals cnt 8:8

4

MDFOperator/get terminals cnt 6:8BD'program? 1:2

TRUE

Now Turtle Graphics Thu, Aug 27. 1992 1:31 PM

MDFOperator/get terminals cnt 6:8DFprogram? 2:2

text

NULL

0DFOperator/get terminals cnt 7:8set info 1:1

(II

MnFOperator/get terminals cnt 6:BDFprogram? 1:2is it here? and where? 1:2

In

Now Turtle Graphics Thu, Aug 27. 1992 1:32 PM

COOFOperator/get terminals cnt 6:8DFprogram? 1:2is it here? and where? 2:2

detach-nt

+1

WDFOperator/draw 1:2

<self> ...-

E•PenSiz•1-"• • DIFIrogrearn

line is also drawn
if terminal has one

New Turtle Graphics Thu, Aug 27, 1992 1:32 PM

WDFOp era tor/ draw 2:2

draw bo

Mpensle

K draw namejI

ODFO peratar/ draw 1:2draw bodg 1:1

\ r~FrameR'oundRecm

Now Turtle Graphics Thu, Aug 27, 1992 1:32 PM

-MDFOperator/ draw 1 :2draw name 1:1

0 D~eao/rw1 2rwro :

r e e to-n >

/Drawtif

Now Turtle Graphics Thu, Aug 27, 1992 1:32 PM

MDFOperator/draw 1:2draw terminals 1:1

terminalA

MDFOperator/ draw 2:2draw body 1:1

Ne url rahc Tu Ag2, 921:2P

MDFOperator/ draw 2:2draw name 1 :1

0

aText Font 0+5+

•D eAtrdw 2:da bd+1:5e nx ec :

IMOF~New Turtleraphw Thua Auod2y 1:9ge e92rc 1:12P

WDFOperator/ draw 2:2draw badg 1:l get neHt rect 1:1

MDF~perator/get terminal rects 1:1

<self> term cnt

eot rects

New Turtle Graphics Thu, Aug 27, 1992 1:32 PM

MDFOperator/get terminal rects 1:I offset 1:1

[rect-to- Int
0 +1

I b-a I
I

kid I

MDFOperator/get terminal rects 1:1 starting pt 1:2

This may need to be removed.
It is here for the implementation

Ints-to-m of the input bar for the user

defined primitive.

§. 1-10 100 20 400)
§2. (10 100 20 400)

EDFOperator/get terminal rects 1:1 starting pt 2:2

rect-to-Int

I E~ 8+

Iln-ts-to-poin

New Turtle Graphics Thu, Aug 27, 1992 1:32 PM

MDFOperator/get terminal rects I:lIget rects 1:1

~startPt - hrz ffe

Remoed ceckto fre cse0

NewTutleGahcs h.u 2,1921:2P

MDFOperator/get terminal rects 1: 1get redts 1:l1get rect 2:2

starDFt +r htor/moff to1t

aMso aduttemnl
becus It-t is operato

NeAute rpis h.Ag 7 92 :2P

MDFOperator/remoue show info 1:1

g dummy

§1

§1. show info on operator

ODFOperator/end draw 1:1

NGTc-,nd-draw in

Now Turtle Graphics Thu, Aug 27, 1992 1:32 PM

V DFNonOpr

NULL <Root> object

root

(0 0 20 0 location of its body

bodyRect
WILL

rootValue

FALSE

selected?

V
textstring

V
dlspstrIng

SDFNonOpr

ii init itself returns nothing
because DF Text

In It has no terminals;
term inaIs called from terminal click?

of process click

1 Disconnect from .
In other objects. draw itself

disconnect jJJ on the 'sc-begin"ed
draw canvas

New Turtle Graphics Tue, Sep 1, 1992 2:50 PM

MDFNonOpr/disconnect 1:2

ZDFNonOpr/disconnect 2:2

New Turtle Graphics Tue, Sep 1, 1992 2:39 PM

MDFNon~pr/Init 1:1

<seff> canvas tx

~~DF~on~ma/enst 1lmkdsr :

diestrn r/x

New urte Gaphcs u. e , 922:9P

MDFNon~pr/init 1:lmakedstmng 2:2

"a 4

amn

MDFNon~pr/draw 1:2

jdra-w linel

draw name,1

jdra-w rootE

MDFNon~pr/draw 2:2

Mdraw-li-nei

gdraw namel

[draw root

New Turtle Graphics Tue. Sep 1, 1992 2:39 PM

MDFNon~pr/draw 1 :2draw line 1:1

F2MoveTo 2) LineToM

CODFNon~pr/draw 1:Zdraw name 1:1

rect-to-Int;

dip strino Mv~
To

Dr

No uteGahc ue e ,19 :9P

MDFNonOpr/draw 1:2draw root 1:1

root

/d raw

MDFNonOpr/draw 2:2draw line 1:1

Ne icon rect

Now Turtle Graphics Tue, Sep 1, 1992 2:39 PM

MDFNon~pr/draw 2:2draw name 1:1

frect-to- Int

ODFNon~pr/draw 2:2draw root 1:1

root

/draw

MDFNon~pr/draw 2:2draw line 11:11get turtle icon rect 1:1

New Turtle Graphics Tue, Sep 1, 1992 2:39 PM

DOFNonOpr/terminals 1:1

Now Turtle Graphics Tue, Sep 1, 1992 2:39 PM

V OFTurtle

NULL <Root> object

root

0 0 20 0 -location of its body
-

bodyRect
NULL

rootValue

FALSE

selected?

textstring

dispatrlng

name

(D FTurtle

returns turtle object (Initialize DFTurtle
object.

translate Inlt

New Turtle Graphics Tue, Sep 1, 1992 2:52 PM

IMDFTurtle/translate 1:1

Y/rootvalu

MDFTurtle/init 1:1

)FTurtle DFQLCanvas

New Tuutle Graphics Tue, Sep 1, 1992 2:52 PM

ODFTurtle/init 1:1 retrieue pTurtle 1:1

turtle o,•menu item gttrl wi

name

fin-nstanc,

MDFTurtle/init 1: 1retrieue pTurtle 1:l get turtle win 1:1

jAplcatio

3curre

Mfind-window-4

§1. Turtle Display

New Turtle Graphics Tue, Sep 1, 1992 ?:52 PM

V DFParameter

NULL <Root> object

root

(0 0 20 0 location of its body

bodyRect
NULLL

rootValue

FALSE

selected?

textstrlng

dlspstrlng

W DFParameter

U returns the
integer value

translate

New Turtle Graphics Tue, Sep 1, 1992 2:52 PM

WDFParameter/translate 1:1

an integer parameter
so just return its value

1/rootValuel

New Turtle Graphics Tue, Sep 1, 1992 2:52 PM

V DFPrimOpr

{20 0 28 0 <Root> object

root

{ 0 020 0 'location of its body

bodyRect
WILL

rootValue

FALSE

selected?

oprname

NULL list of <Terminal>
If --((termrect fromObjlnstnum) ..)

terminals

•DFPrimlpr

Sinput: DFOperator
output: DFOperator

disconnecThis disconnects the object from others.

New Turtle Graphics Tue, Sep 1, 1992 2:53 PM

O'DFWrimD pr/ disconnect 1:1

term.ed~

drot ;ýconnectedT

ODFPrim~pr/disconnect 1: 1 set connectedTa 2:2

New Turtle Graphics Tue, Sep 1, 1992 2:53 PM

"OFPrimOpr/disconnect 1:1 do root 1:2

YconnectedTA

INULLINULL

co nctdTA

MDFPrim~pr/disconnect 1:l do root 2:2

New Turtle Graphics Tue, Sep 1, 1992 2:53 PM

V DFUsrOpr

(20 0 28 0 <Root> object

root

0 0 20 0 location of its body

bodyRect

WILL

rootValue

FALSE

selected?

oprname

NULL list of <Terminal>
S--((termrect fromObjlnstnum) ..

terminals

V
terminal count

NULL

user objects

Now Turtle Graphics Tue, Sep 1, 1992 2:54 PM

V DFInputBar

NUILL <Root> object

root

0 0 20 0 location of its body

bodyRect

NULLL

rootValue

FALSE

selected?

oprname

list of <Terminal>
WI --((termrect fromObjlnstnum) ..)

terminals

NULL

Input termnr

New Turtle Graphics Tue, Sep 1. 1992 2:54 PM

V DFOutputBar

NULL <Root> object

root

0 0 20 0 location of Its body

bodyRect
NULLL

rootValue

FALSE

selected?

oprname
list of <Terminal>

W --((termrect fromObjlnstnum) ..)

termlna ls

output terminals

Now Turtle Graphics Tue, Sep 1, 1992 2:54 PM

V DFEualuator

jDOFEualuator

given a list of DFObjects,
19M~ it returns those with roots

not connected, i.e. starting pts
[N J for program execution

find starting pts

U translate/execute program

translate

MDFEualuator/ find starting pts 1:1

list of DFObjects

1those with root not connectedo

ODFEualuator/find starting pts 1:lthose with root not connected 1:2

<DFObject>

I/canne cteT

NULL X~n

New Turtle Graphics Tue, Sep 1, 1992 2:54 PM

MOFEualuator/find starting pts 1:lthose with root not connected 2:2

<DFObject>

its root is connected
return nothing

p

MDFEualuator/ translate 1:1

<self> DFObj,, ,

New Turtle Graphics Tue, Sep 1, 1992 2:55 PM

LIST OF REFERENCES

[Booc9l] Booch, G., Object-Oriented Design with Applications, The Benjamin/
Cummings Publishing Company, Inc., 1991.

[CIL86] Chang, S., Ichikawa, T., and Ligomenides, P., Visual Languages, Plenum
Press, New York and London, 1986.

[Clay88] Clayson, J., Visual Modeling with LOGO, The MIT Press Cambridge, MA.
1988.

[CN88] Clements, D., and Natasi, B., "Social and cognitive interactions in
educational computer environments." American Educational Research
Association Journal, 1988.

[Fraz87] Frazier, M., "The effects of Logo on angle estimation skills on 7th graders."
Unpublished Master's thesis, Wichita State University, 1987.

[Hare88] Harel, I., "Software design for learning mathematics: on learning Logo and
fractions through instructional software design." MIT Epistemology and
Learning Center, Cambridge, MA. 1988.

[LGL88] Lehrer, R., Guckenberg, T., and Lee, 0.," Comparative study of the cognitive
consequences of inquiry-based Logo instruction." Journal of Educational
Psychology, 1988.

[Pape80] Papert, S., Mindstorns; children, computers, and powerful ideas, Basic

Books, New York, 1980.

[Shu88] Shu, N., Visual Programming, Van Nostrand Reinhold Company, 1988.

[TGS88a] The Gunakara Sun Systems, Prograph Tutorial, 1988.

[TGS88b] The Gunakara Sun Systems, Prograph Reference,1988.

[TGS91] The Gunakara Sun Systems, Prograph 2.5 Updates, 1991.

180

[YM90] Yoder, S., and Moursund, D., Logo PLUS for Educators: A Problem Solving
Approach and LogoWriter for Educators: A Problem Solving Approach.
ISTE, Eugene, OR, 1990.

181

BIBLIOGRAPHY

[Bran87] Brand, S., The Media Lab: Inventing the Future at MIT, Viking Penguin Inc.,
1987.

[Chan9O] Chang, S., Principhs of Visual Languages, Prentice-Hall Inc., Englewood
Cliffs, NJ. 1990

[GF87] Goldenberg, P., and Feureig, W., Exploring Language with Logo, The MIT
Press, Cambridge, MA. 1987.

[KL89] Kim, W., and Lochovsky, F., Object-Oriented Concepts, Databases, and
Applications, ACM PRESS, New York, New York, 1989.

[Laur9O] Laurel, B., The Art of Human Computtr Interface Design, Addison-Wesley
Publishing, 1990.

[Logo80] Logo Computer Systems Inc., Guide To Programming, 1980.

[OS83] O'Shea, T., and Self, J., Learning and Teaching with Computers, Prentice-
Hall Inc., Englewood Cliffs, NJ. 1983

182

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Chairman, Code CS 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5002

4. C. Thomas Wu, Code CS/Wu 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5002

5. David A. Erickson, Code CS/Er 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5002

6. John Daley, LCDR, USN, Code CS/Da 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5002

7. Robert S. Lovejoy, LT/USN 2
9424 S. 83rd Ave.
Hickory Hills, I1 60457

183

[YM90] Yoder, S., and Moursund, D., Logo PLUS for Educators: A Problem Solving
Approach and LogoWriter for Educators: A Problem Solving Approach.
ISTE, Eugene, OR, 1990.

181

BIBLIOGRAPHY

[Bran87] Brand, S., The Media Lab: Inventing the Future at MIT, Viking Penguin Inc.,
1987.

[Chan9O] Chang, S., Principles of Visual Languages, Prentice-Hall Inc., Englewood
Cliffs, NJ. 1990

[GF87] Goldenberg, P., and Feureig, W., Exploring Language with Logo, The MIT
Press, Cambridge, MA. 1987.

[KL89] Kim, W., and Lochovsky, F., Object-Oriented Concepts, Databases, and
Applications, ACM PRESS, New York, New York, 1989.

[Laur9O] Laurel, B., The Art of Human Computer Interface Design, Addison-Wesley

Publishing, 1990.

[Logo80] Logo Computer Systems Inc., Guide To Programming, 1980.

[OS83] O'Shea, T., and Self, J., Learning and Teaching with Computers, Prentice-
Hall Inc., Englewood Cliffs, NJ. 1983.

182

INITIAL DISTRIBUTION LIST

a

1. Defense Technical Information Center 2
I' Cameron Station

Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Chairman, Code CS 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5002

4. C. Thomas Wu, Code CS/Wu 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5002

5. David A. Erickson, Code CS/Er 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5002

6. John Daley, LCDR, USN, Code CS/Da
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5002

7. Robert S. Lovejoy, LTIUSN 2
9424 S. 83rd Ave.
Hickory Hills, I1 60457

183

